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ABSTRACT

Land cover data are frequently used as a basis for estimating total phosphorus
(TP) and total nitrogen (TN) delivered to surface waters. Nutrients, such as TP and TN,
are a leading cause of water quality impairment in the United States. Section 305(b) of
the Clean Water Act requires each state to report all impaired surface waters every two
years. Ideally, this is accomplished with in-stream measurements; however, the cost and
time requirements of such a daunting task are too great for most states to incur.
Alternatively, the export coefficient model (ECM) uses commonly available land cover
and elevation data to screen watershed areas for high levels of nutrient export quickly and
inexpensively. Incorporating the ECM into a GIS architecture allows a watershed
manager to visualize nutrient export over large areas and prioritize those areas
accordingly. Once specific nutrient-yielding areas have been identified and prioritized,
the watershed manager can implement more detailed monitoring and analysis programs.

New developments in GIS have produced a wide range of commonly available
broad-scale geospatial data. For example, the United States Geological Survey (USGS)
freely distributes National Land Cover Data (NLCD), which identify 21 classes of land
cover for the conterminous United States at 30-m resolution. Conversely, fine-scale,
fine-resolution geospatial data, such as locally mapped, 10-m resolution land cover data,
are not widely available, costly, and usually developed for small areas on a client-by-
client basis. In regions where fine-scale, fine-resolution data are not available, watershed
managers need information on the performance of water quality models using fine-scale,
fine-resolution versus broad-scale, coarse-resolution data (e.g., 30-m NLCD).
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The purpose of this thesis is to determine if broad-scale land cover data (e.g., 30-
m NLCD), incorporated within a broad-scale hydrologic model, are appropriate for
effectively screening county- or smaller-sized areas for excessive nutrient exports,
prioritizing those areas, and making management decisions based on the prioritization. I
answer five questions for addressing this issue:

¥ Can broad-scale, coarse-resolution land cover data capture enough
detail to produce usable model results for stream remediation decisions?

2 At what spatial scale do model results produced from fine- and broad-
scale land cover datasets become statistically different?

3. At what spatial scale does the prioritization of sub-watersheds for
nutrient flux change between simulations that use different land cover
data?

4. Within sub-watersheds, is excessive nutrient export more likely to

originate in the riparian zone or farther from the stream?

8. Does the prioritization of areas within watersheds for nutrient flux
reduction change between simulations using fine- and broad-scale data,
such that model results suggest different management scenarios?

Using an ECM, I simulated nutrient loading for Blount County and the Little

River watershed (BCLRW), Tennessee. I compare model results produced from an
ensemble of model runs that incorporated various land cover datasets (of 10-m, 30-m,
and 1-km resolution) at multiple spatial mapping extents, which were represented by 4™,
5" and 6™ order stream contributing areas. Within Arc/Info® GRID®, I constructed an
unweighted ECM that simulates cumulative nutrient exports by watershed, and a
weighted ECM that considers topographic orientation and nutrient trapping ability for

simulating nutrient export within the watershed, allowing the researcher to examine

nutrient export on a pixel-by-pixel basis.



Overall, results support the hypothesis that broad-scale land cover data (e.g., 30-m
NLCD) are appropriate for prioritizing sub-watershed for nutrient flux remediation at the
county-mapping scale in study areas similar to BCLRW. Results from unweighted ECM
simulations suggest that cumulative nutrient fluxes of 4™ order watershed differ
significantly between models based on 30-m and 10-m resolution land cover data.
However, as the area of analysis increases from watersheds of 4™ order streams to those
of 5™ and 6™ order streams, predictions based on 10-m and 30-m input data are not
significantly different.

Weighted ECM simulations using both broad-scale (30-m) and fine-scale (10-m)
data suggest that nutrient fluxes originate in non-riparian areas of the Blount
County/Little River watershed study area. Simulations based on coarser-resolution (30-
m) land cover data produced similar patters of nutrient export within watersheds as
simulations based on higher resolution (10-m) data, but the former accounted for 9% (TP)
to 19% (TN) of the high nutrient export identified by the latter.

Findings from this research do not suggest that detailed data are unnecessary for
modeling the hydrologic processes and water quality of a particular watershed, only that
these data are unnecessary for screening and prioritizing risk areas in a county-sized area.
This project was confined to BCLRW, therefore, the findings are empirical rather than
theoretical. This research is a first step in exploring the effects that geographic scale and
geospatial data resolution have on county-wide hydrologic modeling. Future research
should expand this study and determine whether nutrient modeling trends observed in this

research are similar to those in other places.
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CHAPTER1
INTRODUCTION

Land cover data are frequently used in estimating nutrient constituents of total
phosphorus (TP) and total nitrogen (TN) delivered to surface waters (Wickham and Wade
2002). Empirical studies have shown a strong relationship between land cover
composition and TP and TN exports from watersheds (Haith 1976; Omemik 1976; Hill
1978; Konrad et al.1985; Gale et al. 1993; Heng and Nikolaidis 1998; Nerbonne and
Vondracek 2001; Wang et al. 2002). Enhancements in computer technology and
geographic information science (GIS) enable researchers to broaden the spatial scale of
hydrologic modeling applications. Incorporating land cover information into GIS-based
modeling applications allows the watershed manager to conceptualize and visualize
current and future trends of surface water impairment by nutrients (Burian ez al. 2002).

Surface water pollution sources can be categorized as point source or non-point
source (NPS). In past years, regulations affecting stream water quality in the United
States have been focused on discharges from factories, waste facilities, sewage facilities,
and other point sources (Carrubba 2000). By the 1970s, govemmental regulations such
as the Clean Water Act (1972) compelled industries to address and reduce point source
discharges (e.g., the National Pollution Discharge Elimination System) (USEPA 2003a).
Although this helped to reduce pollution, surface water quality degradation is now being
attributed to NPS water pollution (Sliva and Williams 2000).

NPS pollutants usually originate from upland watershed lands and are transported

via overland flow pathways to standing and running surface waters. NPS pollutants may



originate in large contributing areas with complex topography and land cover, thus
making their sources hard to identify (Likens and Bormann 1974; Henderson and Harris
1975; Dillon and Kirchner 1975; Haith 1976; Omemik 1976; Hill 1978; Konrad et
al.1985; Gale et al. 1993; Heng and Nikolaidis 1998; Carrubba 2000; Sliva and Williams
2000; Nerbonne and Vondracek 2001; Wang et al. 2002). Sediment and nitrogen can
contaminate public drinking water supplies and affect aquatic species diversity and
abundance (Likens and Bormann 1974; Henderson and Harris 1975). Extensive
phosphorus loading accelerates surface water eutrophication (Reckhow et al. 1980;
Winter and Duthie 2000; Fisher et al. 2000). While other NPS pollutant constituents can
also be problematic for environmental systems and human use, this research incorporates
only TP and TN into the modeling process.

Section 305(b) of the Clean Water Act of 1972 requires each state to identify
impaired waters and assess point sources and NPSs of pollution every two years (USEPA
2002). During the 1990s, the United States Environmental Protection Agency’s
(USEPA) Watershed Initiative broadened the spatial scale of NPS remediation by
requiring NPS assessment across entire watersheds rather than in localized areas. Ideally,
this is to be done through direct in-stream monitoring programs; however, the time and
money required for monitoring make comprehensive sampling prohibitively expensive
for most states (McFarland and Hauck 2001; Burt and Johnes 2002).

Alternatively, the export coefficient model (ECM) allows researchers to target
areas for stream remediation quickly and inexpensively. ECModeling assumes that, for
similar climatic regimes, land cover will export a known amount of nutrients. Using
readily available land cover data and export coefficient values (ECVs), which are annual
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estimates of pollutant loading per land cover areal unit, it is possible to estimate a
watershed’s annual nutrient export (Winter and Duthie 2000). When built within a GIS
framework, the ECM allows a researcher to evaluate broad-scale areas for management a
priori, visualizing nutrient-risk areas and prioritizing them accordingly (Johnes 1996;
Mattikalli and Richards 1996; Johnes and Heathwaite 1997; Endreny and Wood 2003).

Unlike complex, hourly-time-step, hydrologic models with large data
requirements, which are cumbersome and complicated to implement at broad scales
(Johnes 1996; Soranno et al. 1996; Endreny and Wood 2003), the ECM uses general
rules of watershed response from commonly available data, such as land cover, ECVs,
and elevation, to estimate real world watershed processes at broad scales (Endreny and
Wood 2003). Land cover data and elevation data are available from the United States
Geological Survey (USGS), which freely distributes 30-m resolution National Land
Cover Data (NLCD) (ca. 1992), global 1-km Land Cover/Land Use Data (ca. 1992), and
digital elevation models (DEM) (of 1-km, 30-m, and 10-m resolution) for the
conterminous United States, over the World Wide Web. ECVs are available in the
hydrologic literature, where numerous empirical studies report observed nutrient export
values and calculated ECVs that can be extrapolated to broader watershed scales
(Reckhow et al. 1980; Beaulac and Reckhow 1982; Frink 1991; Wickham and Wade
2001).

One significant advantage of ECModeling is the ability to analyze large areas.
Watershed managers and county planners often need broad-scale information to quickly
evaluate and prioritize nutrient-exporting areas. The use of commonly available data is

an economically feasible alternative to fine-scale assessments of in-stream water quality



and land cover patterns (Johnes 1996, Johnes and Heathwaite 1997; Endreny and Wood
2003). While broad-scale data (e.g., 30 m resolution extending across the conterminous
U.S.) may introduce uncertainty to particular locations within the watershed
(Meentemeyer 1989), the level of uncertainty can be appropriate for broad-scale studies,
such as those covering entire counties or watersheds. Once the ECM has identified
critical contributing areas, more expensive, detailed in-stream water quality
measurements and modeling may be implemented in targeted areas.

BASINS (Better Assessment Science Integrating Point and Nonpoint Sources)
(USEPA 2001a)—a collection of hydrologic models, GIS toolsets, and geospatial
datasets that operate within the ArcView 3.x computing architecture—includes PLOAD,
a lumped annual pollutant load model that emulates ECModeling. Like most ECMs,
PLOAD does not model hourly time-step activities, nor does it require extensive
meteorological data or atmosphere-vegetation-soil equations; rather, PLOAD uses simple
ECM ideology and commonly available data to prioritize sub-watersheds (USEPA_
2001b; Endreny and Wood 2003; Endreny et al. 2003).

Although accurate ECVs are critical components to ECModeling, the outcome of
modeling depends on land cover scale and resolution. Therefore, different model results
may be obtained from broad-scale, coarse resolution (e.g., 30-m) versus fine-scale, fine-
resolution (e.g., 10-m) land cover data due to differences in areal measurements of each
land cover type.

Several researchers have extended the traditional methods of ECModeling by
including other variables such as terrain shape, runoff pathway characteristics, and buffer
likelihood into the modeling procedure. Few studies, however, have focused on
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questions that arise when considering land cover scale and resolution in different
modeling environments. Burian et al. (2002) compared several land cover datasets for
application in urban environmental modeling. Their study found that in areas 24 km? in
size, simulated nutrient and sediment loadings, based on broad-scale land cover (e.g.,
1:250,000 and/or 30-m resolution), were 8% to 40% higher compared to results based on
locally or regionally mapped land cover (e.g., < 10 m resolution). They suggest that in
small, urban areas significant differences in runoff volume and pollutant load can be
expected between models based on broad-scale, coarse-resolution and fine-scale, fine-
resolution land cover.

Konarska et al. (2002) compared model results from 1-km and 30-m land cover in
an assessment of the total value of ecological service for the conterminous United States.
They used land cover to represent ecological value, which they described as the goods
produced (e.g., timber, pharmaceuticals, and seafood) or the services provided by an
ecosystem (e.g., air and water purification, stabilization of climate, and generation and
renewal of soil and soil fertility). Konarska ez al. (2002) found total ecological value,
according to 30-m land cover, to be 200% higher than the value derived from 1-km land
cover data. They note these differences are due to finer-resolution data (30 m) capturing
more ecologically valued land cover types such as wetland areas.

Endreny et al. (2003) used three land cover datasets—Geographic Information
Retrieval Analysis System (GIRAS), NLCD, and data derived from aerial color near-
infrared digital orthophoto quarter quadrangles (DOQQ)—as inputs to test flow
hydrograph sensitivity levels in the Croton watershed of southeastern New York
produced from WinHPSF, a real-time hydrologic model bundled within BASINS. Their
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study determined the degree to which different land cover datasets, which contain
different measures of impervious surfaces and bare soil, control simulated flow level. In
other words, are there differences in a specific flow peak(s), or does the general shape of
the model-derived hydrograph change when swapping land cover data? Their results
indicate that model sensitivity to different land cover datasets is significant for estimating
specific peak flow discharges, but land cover data swapping does not significantly change
the general shape of the flow hydrograph, which can be considered a broader-scale
watershed characteristic.

These studies show significant differences between results produced from
environmental modeling with broad- versus fine-scale land cover. While absolute
pollutant loads or runoff volume estimates, for example, may differ significantly between
land cover datasets, no existing research addresses the question: Are broad-scale land
cover data (e.g., 30-m NLCD), incorporated within a broad-scale hydrologic model (e.g.,
ECM), appropriate for effectively screening county- or smaller-sized areas for excessive
nutrient exports, prioritizing those areas, and making management decisions based on the
prioritization?

Developing fine-scale, fine-resolution land cover data is costly in both time and
money. As various broad-scale land cover data become more widely available and
modeling is implemented in larger areas, the watershed manager is faced with important
questions: Which land cover dataset to use? What spatial scale (e.g., watershed size) is
appropriate for conducting ECModeling with 30-m data? Ultimately, the goal of my
research is to provide insight into these issues and guide local watershed managers in
future stream remediation projects. In this thesis, I implement an ECM that uses three
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different land cover datasets (10-m, 30-m, and 1-km resolution) at three levels of spatial
scale, which are represented by sub-watershed size, to address the following questions:

1. Can broad-scale, coarse-resolution land cover data capture enough
detail to produce usable model results for stream remediation decisions?

2. At what spatial scale do model results produced from fine- and broad-
scale land cover datasets become statistically different?

3 At what spatial scale does the prioritization of sub-watersheds for
nutrient flux change between simulations that use different land cover
data?

4. Within sub-watersheds, is excessive nutrient export more likely to

originate in the riparian zone or farther from the stream?

5. Does the prioritization of areas within watersheds for nutrient flux
reduction change between simulations using fine- and broad-scale data,
such that model results suggest different management scenarios?

The study area for this project is Blount County and the Little River Watershed,
Tennessee. In answering the above questions, I compare ECModeling results from three
land cover datasets: (a) fine-scale (10-m) land cover data that are part of the Integrated
Pollution Source Identification (IPSI) geographic database developed by the Tennessee
Valley Authority (TVA); (b) broad-scale (30-m) National Land Cover Data (NLCD)
developed by the Multi-Resolution Land Characterization (MRLC) consortium, a group
of federally funded agencies; and (c) global-scale (1-km) Advanced Very High
Resolution Radiometer Land Use/Land Cover (LULC-AVHRR), developed by the
National Aeronautics and Space Administration (NASA).

In this research, I first use a multiple regression approach to develop TP and TN

ECVs from in-stream measurements taken in the Little River watershed between January

1998 and November 2003. Next, I develop two ECMs within the Arc/Info® GRID®



module (ESRI 2001): (1) an unweighted ECM that uses traditional methods suggested by
Reckhow et al. (1980), and (2) a weighted ECM that builds upon the work of Beven and
Kirkby (1979), Beven (1995), and Endreny and Wood (2003). I calibrated both models
with in-stream TP and TN concentrations collected from June to November 2003 in
Ellejoy Creek and Nails Creek watersheds, which are Little River sub-watersheds. I ran
the unweighted ECM at three different spatial mapping extents, which are represented by
4™ 5™ and 6™ order stream contributing areas. For clarity, I refer to each level of spatial
mapping extent simply as watershed extent. 1 compare differences between unweighted
ECM results based on varying levels of watershed extent using an ANOVA test and
correlation matrix. Ithen use the weighted ECM, which considers topographic
orientation and nutrient trapping ability, to illustrate nutrient flux differences within
watersheds and between land cover simulations.

This thesis is organized as follows: Chapter II discusses the study area of Blount
County and the Little River Watershed, and the importance of spatial scale in hydrologic
modeling; Chapter III discusses data acquisition and preparation; Chapter IV presents
methods and results from ECV calculation using multiple regression and details the
development of weighted and unweighted ECMs; Chapter V presents the results from the
ECM calibration, the unweighted ECM analysis, and the weighted ECM analysis.
Finally, Chapter VI discusses research implications arising from the findings of this

study, ECM limitations, and future research.



CHAPTER 11
STUDY AREA AND LITERATURE SURVEY

This chapter discusses the study area used in this thesis, and surveys literature that
addresses the relationship between land cover composition and water quality and the

importance of spatial scale in hydrologic modeling.

The Study Area

The study area for this thesis is Blount County (BC), Tennessee and the Little
River watershed (LRW), which extends into Sevier and Knox counties, Tennessee
(Figure 1). Located in northeastern Tennessee, BCLRW covers approximately 1,744 km®
and includes portions of two 8-digit USGS Hydrologic Unit Code (HUC) watersheds:
Watts Bar Lake (06010201) and Lower Little Tennessee River (06010204) (Figure 2).
The study area contains primarily forest land cover in the upland regions and intensive
agriculture and urban areas in lowland regions.

BCLRW is located in the upper Tennessee River Valley, a northeast to southwest
draining river basin that stretches from southwest Virginia to western Tennessee.
Situated between the Blue Ridge Mountains and Cumberland Plateau, the study area
includes portions of two major physiographic provinces: the Ridge and Valley in the
west and the Blue Ridge Mountains in the east. Topography varies from gently rolling
valleys to extremely steep slopes; elevations range from approximately 228 m in the

valleys to 1,500 m in the mountains, creating a hydrologic environment where streams
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Knox County

Sevier County

Figure 1: The study area. Blount County and the Little River watershed
(BCLRW) of eastern Tennessee.
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follow a trellis pattern and flow through narrow valley floors or cut across steep ridges
(Smith 2000).

The underlying geology includes Ordovician and Cambrian limestones, shales,
dolomites, and Paleozoic sandstones (Rodgers 1953). Heavily forested mountain area
soils are low in fertility, acidic, and light in color (Smith 2000), while valley soils—
classified as Alfisols, Inceptisols, and Ultisols—are well drained, shallow to deep, and
loamy to clayey (Springer and Elder 1980; Eric Henry, personal communication).
Natural vegetation, primarily forest, contains a variety of hardwood and softwood
species; however, various anthropogenic factors, such as logging operations, have
converted portions of the mixed hardwood forest to predominately shallow-rooted,
agricultural vegetation such as row crops and pasture grasses (Smith 2000; DeSelm
2001). Climatic conditions are characteristic of the eastern United States humid
continental climate, with hot summers and short mild winters. Precipitation is greatest
during the winter and spring months when annual rainfall averages roughly 112 to 140
cm. Annual temperature ranges are 50°C to 60°C, depending on topography (DeSelm
2001).

The Little River Watershed, which covers 28% of Watts Bar Lake Watershed and
drains a total of roughly 979 km?, includes approximately 27,435 ha of Great Smoky
Mountain National Park forest in upland areas. Preserved tributary streams converge to
form the upland portions of the Little River, which is an ecoregion reference stream,
classified by the USEPA as a viable natural resource that can be used to establish water
quality standards and for public recreation. However, water quality effects of intensive

lowland agricultural practices and increases in urban growth have caused most Little
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River tributaries, such as Pistol Creek, Ellejoy Creek, Nails Creek, Crooked Creek, Short
Creek, Roddy Branch, and Russell Branch, to be listed on the 305(b) report of 2000 as
impaired waters.

The portion of BCLWR that is not drained by the Little River watershed covers
21% of the Lower Little Tennessee River Watershed and includes 24,733 ha of Great
Smoky Mountains National Park. Lowland sections of this region also include intensive
urban development, and agricultural practices have caused most streams, such as Baker
Creek and Ninemile Creek, to be listed as impaired on the Tennessee 305(b) report of
2000 (TV A 2003).

BCLRW includes the population centers of Maryville (~20,000) and Alcoa
(~7,000). Total population in the study area during 2000 was roughly 105,823. Although
most (63%) of BCLRW’s population resides in urban areas, a high proportion (37%)
lives in rural areas (U.S. Census Bureau 2000).

Blount County includes approximately 37,721 ha of agricultural land, which
contain 2,380 farms that average roughly 36 ha in size. Total cropland covers roughly
2,701 ha; however, most faoming operations are devoted to livestock (60%), which
includes beef cattle, dairy cattle, hogs, and sheep. Beef cattle operations represent the
largest proportion of livestock operations (96%), with a head count of 33,609 total cattle,
while dairy cattle (2%), hog (1%), and sheep (1%) farms occupy smaller areas (USDA
1997).

As an area rich in water resources, outdoor recreation, wildlife and plant species,
and farming, BCLRW is environmentally and economically important to the people of

eastern Tennessee. Ongoing efforts by the Blount County government, United States
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Department of Agricultural (USDA), Tennessee Department of Environmental
Conservation (TDEC), Tennessee Valley Authority (TVA), the University of Tennessee
(UT), and the Little River Water Quality Forum (LRWQF) share the goals of assessing

and improving water quality for present and future use.

Literature Survey

Water quality remediation and the increasing impact of agricultural practices on
surface waters makes BCLRW an ideal area for conducting water quality modeling
analysis with geographic information science (GIS) and export coefficients. This section
discusses the relationship between water quality and intense agricultural practices and
reviews different theories behind broad-scale water quality modeling with export

coefficients and GIS.

Land Use and Water Quality Problems

Empirical studies suggest a strong relationship between NPS pollution loading of
surface waters and the intensity of human land use activity in upland and lowland areas
(Likens and Bormann 1974; Henderson and Harris 1975; Dillon and Kirchner 1975;
Haith 1976; Omemik 1976; Hill 1978; Konrad ef al.1985; Gale et al. 1993; Heng and
Nikolaidis 1998; Carrubba 2000; Nerbonne and Vondracek 2001; Wang et al. 2002).

In BCLRW, agricultural practices have been targeted as a primary land use
contributing to water quality degradation (TVA 2003). Pollutants such as sediment,

nitrogen, and phosphorus are transported through the area via runoff pathways to
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standing and flowing surface waters. Forest cover extent and density are major factors
regulating runoff rates in this region (TVA 2003; Eric Henry, personal communication).
Dense forest cover provides deep-rooted vegetation that stabilizes soil, regulates
infiltration rates, takes up moisture for photosynthesis, and filters subsurface and surface
flow (Hill 1978; Mander et al. 1998). In BCLRW, most forested areas have been
converted to shallow-rooted row crop and pasture lands, causing lower
evapotranspiration levels, higher infiltration rates, higher runoff rates, less soil stability,
less vegetative filtration and, ultimately, higher export of pollutants to surface waters.

In 1992, the USEPA targeted agricultural practices as the number one source of
surface water pollution in the United States (Wang et al. 2002). Agriculture practices in
upland areas can lead to the excess delivery of animal wastes, inorganic nutrients,
pesticides, herbicides, and sediment to streams (Heng and Nikolaidis 1998; Nerbonne and
Vondracek 2001; Wang et al. 2002). The reduction of riparian vegetation due to
livestock grazing causes extensive stream bank instability, resulting in additional soil
losses and destabilization of stream channels (Konrad et al. 1985; Gale et al. 1993; Sliva
and Williams 2001; Wang et al. 2002).

Sediment loading, the most common NPS pollutant in the United States, impairs
approximately 50% of the nation’s streams (Nerbonne and Vondracek 2001). Excessive
delivery of sediment to surface waters via overland flow has detrimental effects on water
quality, drinking water supplies, and stream habitat for fish and invertebrate species
(Jones et al. 2001, Sliva and Williams 2001). Watersheds with high proportions of
impervious surfaces from roads and urban areas greatly increase the frequency and

magnitude of rainfall runoff and thus the risk of erosion and sediment loading into
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surface waters (Harden 1992; Amold and Gibbons 1996). Furthermore, agriculture on
slopes greater than 3% can also cause erosion and excessive sediment loading
(Wischmeier and Smith 1978; Jones et al. 2001), and will result in lower crop yields and
lower pasture productivity due to infertile soils (Hill 1978). In this research, I was unable
to locate sufficient sediment water quality data for sediment modeling. Therefore, the
NPS modeling in this research assesses only nutrient export.

Nutrient loadings, such as nitrate-nitrogen (NO3;N) and phosphorous, are growing
concems for watershed managers (Hill 1978; Reckhow et al. 1980). Excessive nutrient
loading to surface water disrupts aquatic species interactions, disturbs the hydrologic
cycle, and causes eutrophication. Moreover, nutrient loading can affect public drinking
supplies, causing contamination and promoting hazardous public health conditions. Past
researchers have shown a significant positive correlation between nitrogen concentration
in surface waters and the area of agricultural land contributing flow to those waters
(Likens and Bormann 1974; Haith 1976; Omemik 1976). In the United States, increasing
fertilizer and manure applications have been targeted as primary causes of high nitrogen
levels in surface waters (Hill 1978). Agricultural practices have also been linked to
excessive total phosphorus exports to surface waters (Dillon and Kirchner 1975; Omemik
1976). Additionally, numerous empirical studies have found strong relationships
between surface water phosphorus levels, human population, and urban development
(Muir et al. 1973; Gburek and Folmar 1999).

Past research cites climate and soil type as major factors controlling nutrient
fluxes to surface waters. Climate influences the distribution and decomposition of

vegetation, the development of soil, and the distribution of fauna and microflora. Areas
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within warm or temperate climates and zones of high rainfall have been associated with
high levels of nutrient flux (Beaulac and Reckhow 1982). Likewise, soils with high
infiltration rates, low cation content, and low erodibility (e.g., sandy/gravel soils) are
ideal for reducing the nutrient flux via overland flow. Conversely, soils with high cation
content, high erodibility, and low infiltration capacity (e.g., clay or silt loams) can
promote high rates of nutrient export via overland flow (Beaulac and Reckhow 1982).
Henderson and Harris (1975) found that undisturbed, forested watersheds do not
export high levels of nitrogen and are effective in minimizing nitrogen losses due to the
natural recycling mechanisms of vegetative cover. Dense forest cover intercepts a
significant amount of rainfall and decreases nutrient fluxes to surface waters (Dunne and
Leopold 1978; Hill 1978). Coniferous forests have been observed to be more effective
filters for nutrient fluxes compared to deciduous cover (Beaulac and Reckhow 1982).
Gburek and Folmar (1999) found that first-order streams in upland agricultural areas have
significantly higher concentrations of total nitrogen than those located in most forested
areas. In addition, wetlands have been found to significantly decrease, through filtration
and trapping, nitrogen and phosphorus delivered by surface waters (Yarbro et al. 1984).
Reduction of forest cover and wetland area limits the available capacity of the land for
hydrologic cycling of nitrogen and phosphorus and produces more concentrated nitrogen
and phosphorus loads, which are exported more frequently to surface waters (Hill 1978).
Hill (1978) noted that although increasing agricultural activities have been related
to high concentrations and exports of nutrients, landscape patterns—topography, drainage
density, stream bank gradients, soil, and geology—are important factors that influence

the rate at which nutrients are lost to surface waters. Therefore, the geographic scale of a
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particular water quality analysis plays an important role when modeling nutrient

constituents.

Geographic Scale in Water Quality Studies

Geographic scale, as Meentemeyer (1989) described, refers to the decrease or
increase in spatial properties or in temporal properties of a certain phenomenon within a
particular geographic region. Meentemeyer and Box (1987) categorized geographic scale
into two categories: 1) spatial scale and 2) temporal scale.

Spatial scale can be expressed in absolute and relative terms. Absolute scale
involves absolute measurements of distance, direction, shape and geometry. For
example, watershed extent depends on the contributing area of a particular stream; as
stream order increases the spatial extent and contributing area will increase. These
measurements remain constant and can be expressed in absolute units, such as hectares or
kilometers. Relative scale, on the other hand, retains these measurement properties;
however, it conveys them based on one entity being relative to another (Meentemeyer
and Box 1987). For example, consider nutrients being transported via overland flow
down two hillslopes: hillslope X and hillslope Y. Nutrient travel time on hillslope X
may be considered slow due to heavy vegetation growth, although hillslope X’s length is
shorter than hillslope Y.

Unlike spatial scale, temporal scale involves only a single dimension and
direction. Ecological processes can progress slowly or rapidly depending on the type of
processes and the context in which they occur (Meentemeyer and Box 1987,

Meentemeyer 1989). Although temporal scale is an important concept in hydrologic
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research, this study focuses on effects of spatial scale and does not consider the
dimensions of time as they affect hydrologic processes.

Geographic scale is an important factor in modeling hydrologic processes.
Explicitly defining a scale of analysis for research studies a priori has not been the
practice of many researchers, including geographers. The scale of the analysis is often
determined arbitrarily, especially when data availability, or the spatial extent of
geospatial data, is limited (Meentemeyer 1989). Study areas in this research were, for
example, chosen on the basis of data availability. The ability to determine an optimal
watershed extent (e.g., 4™, 5™, and 6™ order sub-watersheds) for modeling annual
pollutant loads (using export coefficients) could assist watershed managers in choosing
which land cover data (e.g., 30 m or 10 m) are best for their modeling needs, and could
save them the time and effort of testing and evaluating different datasets.

This study evaluates differences in spatial scale in water quality modeling by
measuring absolute factors of watershed extent and data resolution to determine the
spatial extent at which coarse-resolution and fine-resolution data begin to produce similar
model results. From the global scale to the local scale, different land cover and elevation
data are available for use in ecological modeling applications. Differences in
terminology regarding scale and resolution are important to consider when choosing
different scales a priori because the spatial extent of the data may not always be related
to the resolution of the data. For example, in a raster GIS environment, one may conduct
a global water quality analysis with a land cover dataset that extends to all areas of the
earth (broad scale) but has a resolution of 10 m (fine resolution); hence, the scale of the

analysis is broad while the resolution of the data is fine. Incorporating both spatial extent
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and resolution into their definition of geographic scale, Allen ef al. (1987) noted that
extent refers to the largest of distinctions, and resolution (or grain) refers to the smallest
of distinctions that can be made in an observation set. In this thesis, I will refer to
broad-scale data as having a large spatial extent (global or conterminous U.S.) and a
coarse pixel resolution (1 km or 30 m), while fine-scale data will be represented by a

smaller spatial extent (state- or county-sized area) and a fine pixel resolution (10 m).

Hydrologic Modeling and Geographic Scale

Broad-scale ecological models have been criticized for not considering various
chemical, organic, and physical processes in modeling calibration (Meentemeyer and Box
1987; Meentemeyer 1989; Johnes 1996; Endreny and Wood 2003). In hydrological
modeling, plant uptake rates, infiltration rates, hourly precipitation, evapotranspiration
rates, and rates of other biotic processes are all used as variables for determining
pollutant concentrations and loadings to surface waters. Hourly time-step models use
extensive data (e.g., hourly rainfall, 10-year water quality monitoring data, and an
extensive soil survey) to provide detailed analysis for making inferences about current
water quality trends and future scenarios, and these models are validated with high levels
of confidence (Amold et al. 1998; Di Luzio et al. 2002; Tong and Chen 2002).

Hierarchy theory (Allen and Starr 1982) explains that lower level ecological
variables (e.g., plant uptake rates, infiltration rates, hourly precipitation, etc.) can be
modeled at broader scales by extrapolating and generalizing the individual (at lower
levels) to the entire group (at higher levels) (Allen et al. 1987). Coarse scales are farther

removed from basic processes, so, although these processes still exist, results from basic
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processes may not convey usable information in the model. Therefore, by choosing a
limited set of variables that vary spatially, one can concentrate on their geography and
compensate for the problem of scale changes (Meentemeyer and Box 1987). For
example, when modeling annual loads of nitrogen per hectare in a small watershed (i.e., a
first-order stream contributing area), detailed variables of plant uptake, vegetation type,
soil infiltration, overland flow pathway location, and runoff rates must be used to
effectively predict loading amounts. As study area extent increases (to the entire
watershed and surrounding watersheds), more broadly defined variables such as land use,
slope, and terrain shape become the most effective predictors of nitrogen loading.
Finally, at the global scale, precipitation and runoff rates are the most effective predictors
of nitrogen loading (Meentemeyer and Box 1987). Thus, when moving from fine to
broad scales, detailed information and basic processes are sacrificed for increasing spatial
extent. At the same time, landscape pattems become more apparent and explain more
about a particular phenomenon at broad than at fine scales (Allen ef al. 1987;
Meentemeyer 1989).

Detailed hydrological models have traditionally been applied to small watersheds
where fine-scale variables are identified and can be modeled in real time (Johnes 1996).
In larger areas that include multiple watersheds, these models become very complex and
difficult to calibrate because of extensive data requirements (Soranno et al. 1996; Johnes
1996; Sliva and Williams 2001; Endreny et al. 2003; Endreny and Wood 2003).
Therefore, the use of detailed models that consider site-specific variables (e.g., hourly
precipitation and plant uptake rates) at broad scales, where landscape pattems are more
apparent, is very cumbersome and time consuming.
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Hierarchy theory has prompted environmental management to focus on broader
variables for ecosystem management. Geographers and other researchers have taken
advantage of this paradigm shift by basing more research on patterns of phenomena
across the landscape. For example, the ecosystem approach to species protection has
produced applications in habitat conservation planning, where ecosystems rather than
individual species are conserved and protected (Noss et al. 1997). Similarly, the
watershed approach to water quality management has focused on the entire watershed
rather than specific point sources of pollution (e.g., the USEPA’s Watershed Initiative of
the 1990s). The advancement and popularity of GIS have facilitated this broad-scale
paradigm shift, allowing fast and efficient manipulation and analysis of larger areas for

which data file size exceeds manual computation ability.

The Impact of Geographic Information Science (GIS) on Hydrologic Modeling
Hydrologic modeling includes a wide variety of non-GIS, computer-based models
that rely on different theoretical assumptions and mathematical algorithms (Tong and
Chen 2002). These models include such efforts as the Sacramento Soil Moisture
Accounting Model (Bumash et al.1973), Soil and Water Assessment Tool (SWAT)
(Amold et al. 1998), Soil and Water Integrated Model (SWIM) (Krysanova and Luik
1989), HYDROTREND (Syvitski et al. 1988), Hydrologic Simulation Program-
FORTRAN (Johanson et al. 1984), Groundwater Loading Effects of Agricultural
Management Systems (GLEAMS) (Leonard et al. 1987), Simulator for Water Resources

in Rural Basins (SWRRB) (Amold et al.1990), Areal Non-point Source Watershed
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Environmental Response Simulation (ANSWERS) (Beasley et al. 1980), and
AGricultural Non-Point Source (AGNPS) (Young et al. 1989).

Over the past 30 years, researchers have used these non-GIS, computer-based
water quality models in numerous urban and rural applications; however, the models
were developed for smaller, data-rich areas, and were not all able to handle larger dataset
processing and geospatial visualization that are inherent to GIS modeling. As the scope
of ecological conservation efforts broadened, the USEPA and other government and
private agencies began to encapsulate GIS functionality and theory into their hydrologic
modeling efforts. The most notable GIS/hydrologic modeling effort came with the
USEPA’s release of BASINS.

BASINS Overview

During the mid-1990s, the USEPA Office of Water began development and
distribution of the Better Assessment Science Integrating Point and Nonpoint Sources
(BASINS) software system that coupled 30 years of hydrologic modeling with powerful
GIS processing and the familiar ArcView® interface (Wittemore et al. 2000; Di Luzio et
al. 2002; Miller et al. 2002). Di Luzio et al. (2002) describe the USEPA’s development
of BASINS as setting out to achieve the following goals: (1) facilitate examination of
environmental information, (2) support analysis of environmental systems, (3) provide a
framework for examining management alternatives, and (4) embrace simple and highly
evolved models that allow for assessment of point source and NPS pollution at both
broad and fine scales. Freely distributed over the World Wide Web

(www.epa.gov/ost/basins), BASINS attempts to meet these goals by providing a versatile
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toolset that can be applied to a wide variety of modeling situations in different human
and/or natural environments.

BASINS operates as a subsystem within the ESRI ArcView 3.x GIS architecture.
It provides a collection of environmental data, along with database management tools and
hydrologic models that use powerful GIS analysis and visualization. Hydrologic models
distributed with BASINS include SWAT, QUAL2E, the Hydrological Simulation
Program — Windows (WinHPSF), and PLOAD. BASINS provides a seamless,
graphically explicit interface where customized tools and models are grouped as
ArcView extensions, enabling users to assess areas quantitatively and qualitatively by
pointing and clicking (Amold et al. 1998; USEPA 2001a; Di Luizo et al. 2002). The
system is categorized into four arenas of operation and functionality: geographic
databases, GIS tool applications, hydrologic models, and graphical output analysis and
report writing (Whittemore et al. 2000; USEPA 2001a; Di Luzio et al. 2002).

SWAT is a complex, daily time-step model developed by the United States
Department of Agriculture (USDA) that aims to assess water management practices by
simulating sediment loading and agricultural chemical production. SWAT allows users
to study the long-term physical processes of water movement, sediment movement, crop
growth, and nutrient cycling by considering various impacts of land use practices,
hydrometerology, vegetation, and topography (Amold et al. 1998; USEPA 2001a).

QUALZE is a simple, steady-state, one-dimensional model for simulating the
transport of water quality constituents in streams under a given flow condition. QUAL2E
requires a combination of user-specified point source data, reach data, and non-point-

source data for simulation (USEPA 2001a).
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WinHPSF is a complex, lumped parameter, hourly time-step model used to
predict runoff and in-stream water quality constituent concentrations through the
simulation of NPS pollution transport at a variety of temporal scales (Carrubba 2000;
USEPA 2001). WinHPSF functionality derives from the HPSF-FORTRAN model used
by water quality modelers for over 40 years, which is considered the most complete NPS
pollutant-loading model available (Laroche et al. 1996; Carrubba 2000). Developed by
AQUA TERRA Consulting, WinHSPF emulates all functionality of the older FORTRAN

© environment. Because WinHSPF considers annual, monthly,

version in a Windows
daily, and hourly modeling, calibration requires extensive acquisition of data, such as
hourly meteorological data, stream networks, channel geometry, and land use (USEPA
2001a). Although WinHSFP may be applied to a variety of study sites and projects
(Carrubba 2000), data availability may dictate the applicability of the model.

PLOAD is a simplified, broad-scale model that prioritizes critical watersheds by
calculating lumped annualized pollutant loading and identifying pollutant-related
problem areas. Developed by CH2M Hill Consulting, PLOAD provides a graphically
explicit, user-friendly GIS interface for export coefficient modeling (discussed in the next
section) with minimal data requirements (e.g., land cover, export coefficient values, and
watershed boundaries) to produce lumped annual watershed loadings. The model can be
applied to a wide range of water quality projects in various landscapes, and it has been
extensively used by water quality investigators from both federal agencies and private

consulting firms in building total maximum daily load (TMDL) reports for section 303(d)

of the Clean Water Act (USEPA 2001b).
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The Export Coefficient Model

The export coefficient model (ECM) uses export coefficient values (ECV) to
predict the export of annual pollutant loads from land use source areas to surface waters
under conditions of uncertainty. Ideally, NPS pollution areas are identified and evaluated
using in-stream measurements from the entire hydrologic network; however, the
extensive amount of time and personnel needed to accomplish such a daunting task
necessitates methods for extrapolating estimates of pollutant loading from
incomplete/sparse data (McFarland and Hauck 2001). Recommended as an altemative to
in-stream measurements (Reckhow et al. 1980; Beaulac and Reckhow 1982; Frink 1991;
McFarland and Hauck 2001), ECVs estimate the rates at which pollutants are lost to
surface waters per unit area of land use types annually, and they can be extrapolated to
broad scales. Empirical studies (e.g., Lin 1972; Loehr 1974; Uttormark et al.1974) have
observed pollutant exports from small watersheds over five- to ten-year periods and have
provided ranges of ECVs (see Reckhow et al. 1980) that can be calibrated—based on
local conditions of soil, rainfall, and runoff rates—and extrapolated to larger areas.

The ECM uses a linear equation to sum annual exports of pollution by land cover

type as:

N
LN = Z(EPC B Al‘) (Eq 1)

c=1
where Ly represents the total basin pollutant load (kg/yr), E, is a pollutant-loading rate
for land cover type c (kg/ha/year), and A, is the area of land cover type ¢ (ha) (Reckhow
et al. 1980). Unlike the more complex models discussed earlier, the ECM does not

require extensive hourly meteorological data or sophisticated biogeophysical equations;
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rather, fine-scale detail is sacrificed for simplicity and readily available data that can
generalize broader-scale watershed processes and detect spatial variability across the
landscape (Endreny and Wood 2003). Ultimately, ECModeling conserves valuable time,
effort, and money by providing a management team the ability to scope large areas a
priori, target critical pollutant contribution (or risk) areas (Maas et al. 1988; Gale et al.
1993), and prioritize them accordingly. Once critical contributing areas have been
identified and prioritized, more extensive and detailed analyses may then be implemented
to determine which management action will be most economically and environmentally
productive. GIS, combined with an ECM, enables watershed managers to broaden the
spatial scale with more ease, functionality, and robustness. For example, Wickham and
Wade (2002) applied ECModeling with GIS to 1,000 watersheds in Maryland for
estimating risk areas for nutrient export. Broadening the spatial scale to the state level,
they were able to depict spatial variability of annual nutrient loading and land cover
distribution between watersheds across a state-sized landscape, finding a strong
relationship between areas high in agriculture or urban cover and high nutrient exports.

Early development of ECMs relied on spreadsheet analyses of land cover metrics
and precluded the possibility for analyzing spatial variability and landscape patterns
(Endreny and Wood 2003). This approach has since been built upon and modified,
incorporating more ecological variables, correcting erroneous assumptions, and further
broadening the spatial scale. For example, traditional ECMs, such as Equation 1, portray
each land use type as homogenous across the landscape, and assume that similar land use
types export the same amount of load and that 100% of that load will reach surface

waters, not considering factors of terrain and vegetation that may accentuate or attenuate
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pollutant loadings along flow paths (Soranno et al. 1996; Endreny and Wood 2003).
Furthermore, researchers have shown that nutrients often reach surface waters attached to
sediment particles and may be deposited or transformed before they reach surface waters
(Novotny and Chesters 1989; Soranno et al. 1996). In a raster-modeling environment,
homogenous landscapes allow no interaction between pixel loads and their upslope
contributing and downslope dispersal area (Endreny and Wood 2003), therefore missing
any nutrient transformation or distance-decay that may occur.

Researchers have developed several GIS-based ECMs that modify the traditional
methods and take into account the ecological variables listed above with less uncertainty.
For example, Mattikalli and Richards (1996) used a GIS-ECM to conduct a time-series
analysis of ECV change in relation to land use changes over a multiyear period. Soranno
et al. (1996) developed a method that uses phosphorus (P) flux coefficients with
traditional ECVs as a function of overland flow pathway lengths. For every unit of travel
along the flow path, P-fluxes will attenuate P loadings and not assume 100% of P export
will reach surface waters. Johnes and Heathwaite (1997) developed a distance-decay
component that treated riparian corridors as critical areas for filtering nutrient loads to
surface waters. They assigned larger land use loads for areas within 50 m from the
stream; however the values remained static (as they were chosen a priori) and did not
dynamically change with the variation in terrain shape and vegetation buffers. Endreny
and Wood (2003) developed a method for weighting ECV's based on terrain and
vegetative buffer characteristics. Unlike the method provided by Johnes and Heathwaite
(1997), they dynamically weighted ECVs as overland flow pathways interact with

different terrain types and vegetative buffers, thus portraying pollutant loadings as
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heterogenous in relation to different land use types. These advances and new approaches
allow spatially explicit models that consider the effect of landscape features on nutrient
export.

The above examples provide watershed managers with more flexibility and
functionality for ECModeling; nevertheless, the modifications to traditional ECMs all
retain a common goal for future replication—simplicity. Successful implementation of
these modified ECMs allows the watershed manager or researcher to reduce uncertainly
in scoping different remediation areas by providing methods for considering other
important biophysical factors (e.g., nutrient distance decay) and aiming model application
at fine or broad scales while maintaining a simple model.

GIS provides a computing environment in which overland flow pathways, terrain
shape indices, slope, and land cover can be processed quickly and inexpensively. Land
cover is the primary component in any ECM, and the availability of accurate land cover
datasets is a critical issue in ECModeling. Also, the different scales of available land
cover datasets play an important role in ECModeling. As a watershed manager, certain
concerns arise: Should I choose finer- or broader-scale land cover? At what watershed
extent should I choose broad-scale land cover over fine-scale or vice versa for
ECModeling purposes? When modeling areas at risk for high nutrient export within sub-
watersheds, will model results using broad-scale data suggest that different management
practices need to be implemented compared to model results from fine-scale data?

These questions stem from the growing availability of GIS and land cover data,
and the uncertainly surrounding issues of geographic scale. Because ECModeling is
typically used in rural watersheds due to the high amount of uncertainty associated with
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urban ECVs (Beaulac and Reckhow 1982; Frink 1991), BCLRW provides an excellent

location for conducting modified and traditional ECModeling to answer these questions.
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CHAPTER III
METHODS: OBJECTIVES AND DATA PREPARATION

Project Scope and Objectives

In this research, I test the hypothesis that an export coefficient model (ECM)
based on broad-scale land cover data can capture enough detail to produce results
comparable to those from an ECM based on fine-scale data at the county-mapping scale.
Again, I identify broad-scale datasets as having a global or conterminous U.S. extent with
a 1-km or 30-m resolution, while fine-scale datasets have a county-wide extent with a 10-
m resolution. Additionally, I answer the questions: At what watershed extent do ECM
results produced from fine- and broad-scale land cover datasets become statistically
different? At what watershed extent does the prioritization of sub-watersheds for nutrient
flux change between simulations using broad- and fine-scale land cover data? Within
sub-watersheds, is excessive nutrient export more likely to originate in the riparian zone
or farther from the stream? Does the prioritization of areas within sub-watersheds for
nutrient flux reduction change between simulations using fine- and broad-scale datasets,
such that model results suggest different management scenarios?

Specific objectives for addressing these questions include:

1. To develop nutrient export coefficient values (EVCs) of total

phosphorus (TP) and total nitrogen (TN) from in-stream measurements
observed in BCLRW between 1998 and 2003 using a multiple

regression technique.

2. To develop two ECMs within Arc/Info® GRID® that model (a) lumped
annual nutrient loads by 4™, 5, and 6™ order stream contributing areas
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and (b) topographically weighted nutrient loads within contributing
areas.

3. To calibrate the ECM model against in-stream measurements taken in
the Ellejoy Creek and Nails Creek watersheds.

4. To implement an ensemble of ECM simulations that model 4"’, S‘h, and
6™ order sub-watershed nutrient loads using IPSI, NLCD, and LULC-
AVHRR.

S. To statistically compare model results from the three land cover datasets

at different watershed scales.
6. To employ a second ECM that uses runoff likelihood and nutrient

trapping potential to weight ECVs, allowing the researcher to analyze
export variability within each sub-watershed.

GIS and Water Quality Data

Data for this thesis have been obtained from federal and state government
agencies and in-stream field surveys conducted by myself and graduate students from the
Biosystems Engineering and Environmental Science (BEES) department at the
University of Tennessee (UT). Geospatial data, which include land cover and digital
elevation models (DEM), were acquired from the Untied States Geological Survey
(USGS), National Aeronautics and Space Administration (NASA), the United States
Environmental Protection Agency (USEPA), the Multi-Resolution Land Characterization
(MRLC) Consortium, and the Tennessee Valley Authority (TVA). The Tennessee
Department of Environmental Conservation (TDEC) provided in-stream TP and TN
water quality measurements taken during 1998 and 1999. Primary data collection of TP

and TN started in June 2003 and continued monthly until November 2003.

32



Land Cover Data

Broad-scale land cover data are represented by 1-km resolution USGS-NASA
Land Cover/Land Use (LCLU) and 30-m resolution National Land Cover Data (NLCD),
while fine-scale data are represented by land cover derived from sub-meter, low-level
aerial photography distributed as part of a multi-layer geographic database produced by
TVA and referred to as Integrated Pollutant Source Identification (IPSI).

Land Use/Land Cover (LULC) data were derived from Advanced Very High
Resolution Radiometer (AVHRR) satellite imagery collected during April 1992 through
March 1993. LULC-AVHRR is freely distributed by the USGS-NASA Land Processes
Distributed Active Archive Center’s (http://edcdaac.usgs.gov) Global Land Cover
Characterization (GLCC) program, which characterizes the global landscape at a 1-km
spatial resolution for use in broad-scale environmental modeling and assessment studies,
such as global climate change and species habitat assessment (USGS-NASA 2003).
Applying 1-km data to ECModeling at the county mapping scale (e.g., BCLRW) is not
practical for accurate modeling. However, incorporating LULC-AVHRR in this study
will help determine whether general patterns of water quality variability are maintained
as scale of the analysis expands from 4™ to 6™ order watersheds and from 10-m to 1-km
resolution data.

Derived from the Anderson Level I classification scheme (Anderson et al. 1976),
LULC-AVHRR uses a 24-class scheme (Table A.1) that was first released in 1997
(version 1.0) and supplemented with a modified version 2.0 in 2000. Informal data
quality assessments have been performed on LULC-AVHRR’s version 1.0, in which sets

of randomly chosen pixels were referenced to Landsat-5 and SPOT satellite imagery,
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yielding accuracy levels between 54.9% and 78.7% (Scepan 1999; USGS and NASA
2003). Although no current accuracy assessments have been conducted for LULC-
AVHRR version 2.0, I have chosen to use this dataset in my analysis because it
represents the most up-to-date version of 1-km land cover data available.

National Land Cover Data (NLCD) are derived from Landsat-5 Thematic Mapper
(TM) satellite imagery of the conterminous United States circa 1992 (Loveland and Shaw
1996; USEPA 2003b). Developed by the MRLC consortium, a group of federal agencies
designated specifically for landscape characterization, NLCD uses a modified Anderson
classification scheme (Anderson et al. 1976) of 21 classes (Table A.1) to depict land
cover across the landscape at a spatial resolution of 30-m (Vogelmann et al. 2001;
Konarska et al. 2002). NLCD is freely distributed by the MRLC Consortium and USGS
at the USGS’ seamless data distribution website (http//seamless.usgs.gov).

NLCD is a supervised classification that relies on human selection of training
grounds, with different individuals working on each state. Training grounds for
particular land cover classes also vary by state, introducing some classification error.
Accuracy assessments were conducted for the ten USEPA regions such that samples of
each region’s land cover were referenced to aerial photography and raw TM imagery.
Pixels of unknown classification within the sample were compared to Landsat TM
composite imagery and photo-interpreted 1:40,000 scale National Aerial Photography
Program (NAPP) images (Yang et al. 2001). Error matrices of this analysis have been
developed by the USEPA and are available from USEPA. Overall, NLCD provides a
good representation of land cover, with the eastern United States yielding accuracy levels

of 59.9% for Anderson Level II and 80.5% for Anderson Level I (Yang et al. 2001). Itis
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especially appropriate for regional studies, although small amounts of classification error
exist in the data (e.g., between row crops and pasture) (Vogelmann ef al. 1998; Smith et
al. 2002).

TVA’s ISPI database is developed from low-level, high-resolution, color-infrared
aerial photographs (< 30-cm resolution) acquired during the leaf-off season in February
2000. GIS software and photo interpretation methods were used to analyze the aerial
photographs, building accompanying geospatial data layers that identify a 55-class land
use/land cover layer (Table A.1), hydrological network, stream bank erosion sites,
livestock operations, and other potential sources of nonpoint pollution (i.e., quarry
operations, junk pile sites). The IPSI land cover dataset was digitized at a 1:12,000
mapping scale, for which the minimum mapping unit is roughly one hectare (TVA 2003).
While IPSI includes multiple geospatial datasets, this research uses only the land cover
dataset; for clarity, I will refer to the IPSI land cover dataset simply as /PSZ. IPSI is
distributed to watershed group clients as part of TVA’s environmental program to assess
different watersheds within and outside the TV A river system and provide clients
assistance in watershed remediation and stream restoration (TVA 2002; TVA 2003).
IPSI, however, only covers watershed- or county-sized areas, is site specific based on
client needs, and is only available for client and TV A personnel usage.

Land Cover Reclassification

In order to compare datasets, I reclassified the land cover datasets to a common
six-class scheme (Table 1; Figure 3). I developed this broadly defined class scheme
based on the relevancy of each land cover type in traditional ECM approaches, and the

availability of literature-reported ECVs. For example, Beaulac and Reckhow (1982) and
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Table 1: Reclassified land cover composition.

IPSI NLCD LULC-AVHRR
Land Cover ha % ha % ha %
Urban 19,644 11.3 7,595 44 2,568 1.5
Forest 112,520  63.1 129,681 74.2 135,083 77.1
Pasture 35,369 20.3 28,683 16.4 14,840 8.5
Cropland 3,281 1.9 6,120 35 21,975 12.5
Barren Land 1,077 0.6 389 0.2 0 0.0
Open Water 2,594 1.5 2,013 1.2 761 0.4
Totals 174,486 100 174,479 100 175,228 100




Original Land Cover Reclassified Land Cover

Reclassified Land Cover*
‘ Urban - Forest O Pasture O Cropland - Barren Land - Open Water
* Darker shades of green indicate other types of forest, which are only part
2 of the original classification scheme.
l:) 2:5 Kilometers

Figure 3: Land cover reclassification. (a) IPSI, (b) NLCD, and (¢) LULC-AVHRR
reclassification.
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Frink et al. (1991) noted that a great deal of uncertainty exists when considering ECVs in
an urban landscape. Modeling specific urban land covers (e.g., residential, commercial,
and transportation) with the ECM can promote unrealistic estimates of pollutant loading
due to the complexity and interactions of human-made entities, such as storm drains and
sewage networks (McFarland and Hauck 2001). Furthermore, the ECM is intended for
rural landscape applications (Reckhow et al. 1980) where agriculture and other less
complex land covers can be isolated as NPS pollutant contributors with greater
confidence. In this research, I modeled urban areas as one land cover type without a
further breakdown of land cover subcategories. I aggregated agricultural land into
Pasture and Cropland, two broadly defined land uses, because of their differences in
NPS pollutant fluxes (Beaulac and Reckhow 1982). For example, differences in fertilizer
application type and quantity between tobacco crops and pasture grasses will lead to
different amounts of nutrient export.

Itemizing the IPSI, NLCD, and LULC-AVHRR land cover types into this six-
class scheme was based on broadly defined class definitions of the original data (if
available), and the impact that each land cover type may have on fluxes of nutrient
loadings to surface waters. NLCD and IPSI are classified in a hierarchical manner so that
detailed descriptions of land cover types exist within more broadly defined categories
(Table A.1). Figure 3 illustrates the change in land cover composition from detailed land
cover classes to the generalized six-class scheme, while Table A.2 provides a detailed
reclassification overview; my basis for itemizing classifications is discussed further

below.
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Urban reclassification for NLCD and LULC-AVHRR included all residential
(low and high density), commercial/transportation and industrial land uses, along with
residential development and urban grasses (e.g., parks and golf courses). The IPSI
reclassification included the same land use types and all those included in IPSI’s broadly
defined categories (Table A.2). Forest reclassification combined all forested NLCD and
LULC-AVHRR land cover types of deciduous, coniferous, and mixed forest. Park and
Great Smoky Mountains National Park (GSMNP) land cover from IPSI were also
grouped within this category. GSMNP and park land cover types were developed with
the assumption that all GSMNP areas—excluding Cades Cove, a grassland area—are
complete forest cover. Because IPSI is developed specifically for locating NPS pollution,
forest land cover was generalized during development into one class and not separated
into individual forest types (TVA 2003). I categorized all wetland land cover identified
by IPSI and NLCD into the Forest reclassification because, like forested areas, they
reduce nutrient loads to surface waters (Yarbro et al. 1984; Preston and Bedford 1988;
Wickham and Wade 2002). LULC-AVHRR does not capture these areas within the
study area.

Pasture reclassification included all agricultural land that functions as livestock
grazing land. Mixed pasture/woodland land use classes identified by IPSI and LULC-
AVHRR were included in Pasture due to their presence as livestock areas. Although
IPSI classified Cades Cove as grassland, NLCD identified it as pasture. I grouped this
area into the Pasture class due to its function as a forage area for larger, terrestrial
wildlife species. LULC-AVHRR classifications of grassland and savanna, which define

areas of natural and/or prairie grasses, were also reclassified to Pasture. Natural savanna
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grasses are typically found in midwestern prairie landscapes and are not indigenous to
eastern Tennessee.

Cropland reclassification included all cultivated lands. Iincluded all row-
cropping land uses from the three land cover datasets as well as the IPSI classifications of
orchards, vineyards, and nurseries in this reclassified category. Although the nutrient
generation from row and cover crops may differ, I could not reclassify row and crops into
their own class because the original land cover classification only identifies a single
category for cropland and does not identify individual crop types.

Barren Land reclassification included all barren, clear-cut, and transitional land.
[PSI’s disturbed areas, landfills, mining, quarries, borrow, and forest clear-cut land
covers were included in this category. Likewise, NLCD land cover of bare rock/soil,
quarry operations, and transitional land were included in this group. Transitional land is
defined as areas changing (with < 25% vegetative cover) from one land cover to another
because of a certain land use activity such as residential development, forest fire, or other

vegetative clearing activities (USEPA 2003b).

Elevation Data

The USGS freely distributes seamless 30- and 10-m digital elevation models
(DEM), which are part of the National Elevation Dataset (NED) program and cover most
United States regions (http.//seamless.usgs.gov). Thirty- and 10-m NED are corrected
versions of the older DEMs typically derived from existing USGS topographic maps and
stereo photogrammetry (Garbrecht and Martz 2001). The NED program was

implemented to spatially correct previously developed DEMs that exhibit human-caused
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(e.g., data collection and rounding) and systematic errors. Systematic error results from
mosaicking smaller (7.5-minute quadrates) DEMs and changing mapping projections.
NED is distributed as a seamless dataset that incorporates one common projection,
eliminating many of the systematic errors associated with older DEMs. The 30-m NED
is available for the conterminous United States, while 10-m NED datasets are available
for only selected, state-sized areas, which include Tennessee.

DEMs are an important asset to hydrologic modeling applications. DEMs are
raster-based geospatial layers in which elevation values are stored in a matrix of cells
such that each cell contains only one elevation value and rows and columns within the
matrix represent locations on the earth. The simplicity in aggregation of data within the
raster DEM promotes quick and effective computation ability, allowing modeling and
evaluation of large areas in a short amount of time (Garbrecht and Martz 2001). Well-
developed research has incorporated DEMs into a variety of hydrologic modeling efforts,
and, over the years, the possibilities of modeling hydrologic systems with DEMs have
spawned new methods and techniques for modeling broad-scale hydrologic processes
such as flow path extraction (O’Callaghan and Mark 1984; Quinn et al. 1991; Tarboton
1997), runoff processes (Beven 1995; Endreny and Wood 2001), drainage area
delineation (Abt et al. 1995), and flood simulation (Colby et al. 2000).

In this research, 30-m NED represents broad-scale elevation data, while 10-m
NED represents fine-scale elevation data. Global DEMs of 1-km resolution are available
from the USGS-NASA Land Processes Distributed Active Archive Center
(http://fedcdaac.usgs.gov/main.asp); however, I excluded this dataset from the weighted

ECM computation because 1-km data, simply put, are not practical for modeling nutrient
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export within 4™ 5™ or 6™ order watersheds. The raster modeling approach I have
chosen requires each set of land cover and elevation data (30-m and 10-m) to maintain
the same spatial projection and resolution. The land cover datasets are distributed in a
variety of different mapping coordinate systems and projections; therefore, I transformed
all geospatial data, including NED, to the State Plane Coordinate System with a Lambert
Conformal Conic projection. IPSI land cover is distributed as a vector geospatial layer as
it has been digitized from aerial photographs. In maintaining common spatial resolutions
between land cover and DEMSs, I converted IPSI land cover to a 10-m raster data format

in order to represent the fine-scale land cover.

Water Quality Data

Stream quality data for this thesis incorporate both primary data collected by
myself and other UT graduate students, and secondary data acquired from TDEC. In-
stream water quality measurements were used for the BCLRW-ECM calibration and
ECV development. Primary data collection was part of a collaboration between UT-
BEES, TVA, and TDEC to develop a Total Maximum Daily Load (TMDL) report, as
required by Section 303(d) of the US Clean Water Act (USEPA 2003c), for the Little
River tributaries of Ellejoy Creek and Nails Creek.

Secondary data, collected by TDEC, included stream water quality from June
1998 to October 1998 for the Little River watershed. These data were from 14 sampling
sites located along the Little River where tributary reaches converge with the main steam
(Figure 4). TDEC complemented 1998 data with a three-month—April, August, and

December 1999—sampling survey, collecting from two sampling sites (Figure 4) located
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Figure 4: TDEC sampling site locations.
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in southern Blount County. Both 1998 and 1999 data included phosphate and nitrite-
nitrate species which were measured in grab samples taken during base flow conditions.
Data were analyzed in Tennessee State Health Department laboratories that maintained
TDEC and USEPA Office of Water Resource Control (WRC) quality control standards.

Primary stream quality data were collected monthly from June 2003 through
November 2003. We sampled 12 sites along Ellejoy Creek and Nails Creek, which are
tributaries of the Little River (Figure 5). Following sampling procedures used by TDEC
in 1998 and 1999 and USEPA WRC lab standards, grab samples were analyzed by BEES
laboratories.

I computed TP and TN nutrient counts from both TDEC and BEES samples by
using the sum of total kjeldahl phosphorus (TKP) and total phosphate (POj)
measurements to represent TP, and the sum of total kjeldahl nitrogen (TKN), total nitrate
(NOs), and total ammonia (NH4-TN) to represent TN. These individual nitrogen and
phosphorus species are susceptible to seasonal variations in concentration levels; thus, the
ECModeling approach uses total representations of individual phosphorus and nitrogen
species, allowing more reliable indicators of variations in nutrient loading annually
(Yarbro et al. 1984; Johnes 1996; Johnes and Heathwaite 1997).

We determined stream flow at each site with a Swoffer 3000 portable flow meter
that measured flow velocity rates (m/sec) with a 30-sec count. To compute flow
discharge rates (m’/sec), we collected flow velocity rates (m/sec) at 1-m intervals across
the channel and noted the depth at each interval. Water depths were averaged and
multiplied by the total channel width to give stream channel area. We then averaged flow

velocities at each 1-m interval width and multiplied those products by the channel area to
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45



give a discharge rate (Watson and Burnett 1995). Stream flow rates from 1998 and 1999
had been obtained by TDEC in a similar manner. Although many methods exist for
calculating stream discharge, we used TDEC’s method to keep continuity between
primary and secondary data collection methods.

Data used in this research are not continuous over the five-year sampling period
(1998 to 2003). No sampling was conducted within BCLRW during the 2000-2002
period, which may cause misrepresentations of stream chemistry in BCLRW. BCLRW
does not contain any continuously monitored streams (e.g., USGS Gauge Station
streams); hence, water quality sampling in this area has been limited and relies primarily
on TDEC sampling efforts. Additionally, water quality sampling was part of an ongoing
project to develop TMDL reports for Ellejoy and Nails creeks; therefore, sampling sites
were selected by TDEC personnel with the purpose of providing a basic representation of
water quality conditions along Ellejoy and Nails Creek. While a representation of the
entire study area would be more practical for this thesis, the limited amount of existing
data and limited time prevented me from conducting a more extensive water quality

survey.

Sub-Watershed Delineation

Each sub-watershed layer (Figure 6) was computed from the 10-m DEM using
hydrologic modeling tools available within GRID®. The 10-m DEM represents the finest
representation of elevation available for the area, as watershed boundaries created
from this dataset are more detailed than those from the 30-m or 1-km data. I used a five-

step watershed delineation process that (1) calculates flow direction, (2) calculates flow
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accumulation, (3) extracts flow paths, (4) determines stream order, and (5) determines
drainage areas for each stream of specified order. The flow accumulation algorithm with
GRID® uses the Deterministic 8-node (D-8) method (O'Callaghan and Mark 1984),
whereby only the steepest angle of descent between eight neighboring pixels is extracted
on a pixel-by-pixel basis.

The D-8 method works well in areas where terrain is rugged, and flow usually
follows a single descent path because of the extreme differences in one elevation pixel to
the next. However, flat, gently rolling terrain may be problematic for the D-8 method
because pixel-by-pixel elevation differences are less apparent, creating multiple flow
paths; runoff has multiple pathways to travel rather than one distinct descent. BCLRW
consists of mostly rugged terrain; however, bottomland areas follow a more gently rolling
topography. While alternative flow path extraction algorithms that perform better in flat
terrain exist—the Multiple Flow (Quinn et al. 1991) or DEMON (Costa-Cabral and
Burges 1994)—only the D-8 method was used in this research. Flow paths are identified
by the number of pixels accumulated into one another. The output flow path layer
assigns an accumulated pixel count to each pixel’s attribute value. Pixel values with
higher counts identify those pixels that are likely to be a stream channel or drainage path.

In this research, I identify streams by extracting pixels from the 10-m DEM that
accumulated 500 or more upland pixels. Assuming that NED 10-m DEMSs are the most
accurate representation of elevation, I use only this layer for defining sub-watershed
boundaries. The pixel accumulation layer was derived from a 10-m DEM free of
depressions. DEM depressions are systematic errors that arise during the DEM

development from erroneous (human) data collection or, in most cases, the changing of
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precision (e.g., rounding from floating-point to integer values) (Garbrecht and Martz
2001). Depressions in the DEM interrupt overland flow path extraction and therefore
must be filled. While topographic depressions exist in the landscape and may serve as
runoff (Dunne and Leopold 1978) and/or nutrient storage, it is uncharacteristic for
topographic depressions in the eastern United States, even in karst regions, to be equal to
pixel-sized areas (e.g., 100 m*) (Mark 1984). While NED attempts to minimize
systematic errors, removing depressions will further insure correct hydrologic extraction.
I used a subsequent stream-ordering algorithm to calculate stream order, which computes
order based on the Strahler method (See ESRI 2004), and, finally, sub-watershed
boundaries. GIS layers illustrated in Figure 6 identify resulting 4", 5™ and 6™ order
stream contributing area boundaries that serve as the sub-watersheds within BCLRW.
Fourth order sub-watersheds average 209 hectares (N = 834), 5™ order sub-watersheds
average 848 hectares (N =194), and 6" order sub-watersheds average 3,420 hectares (N
=52). These three GIS layers represent watershed mapping extents in the ECModeling
processes discussed in Chapter IV.

BCLRW includes both political (Blount County) and natural boundaries (Little
River watershed). I clipped sub-watersheds that extend beyond the Blount County
political boundary, leaving only portions of those sub-watersheds. Simply excluding the
entire area of bordering sub-watersheds usually resulted in a significant loss in total study
area. Once sub-watershed boundaries were defined, I calculated ECVs from in-stream

measurements and/or values reported in empirical studies in the literature.
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CHAPTER 1V
METHODS: THE EXPORT MODEL APPROACH

The export coefficient model (ECM) is a simple water quality model that uses
commonly available data, such as land cover, elevation data, and export coefficient
values (ECV) to model broad-scale watershed processes (Reckhow ef al. 1980; Frink
1991; McFarland and Hauck 2001). Using readily available land cover data and ECVs,
which are annual estimations of pollutant loading per land cover area unit, ECModeling
assumes that for similar climatic regimes a given land cover will export a known amount
of nutrients. Under this assumption, it is possible to estimate a watershed’s total nutrient
load entering surface waters (Winter and Duthie 2000). This research uses two variations
of ECModeling; an unweighted ECM, and a weighted ECM. The unweighted ECM uses
land cover measurements and ECV's to sum nutrient export by sub-watershed and allow
for an examination of variability between watersheds. The weighted ECM approach uses
runoff likelihood and vegetative trapping ability to weight ECVs to the landscape, which
allows for an examination of export variability within each sub-watershed.

Built within a GIS framework, either ECM allows the researcher to evaluate
broad-scale areas for water quality remediation a priori by visualizing risk areas and
prioritizing them accordingly (Johnes et al. 1996; Endreny and Wood 2003). Ihave
developed both ECMs in Arc/Info® GRID® and calibrated the BCLRW-ECM against in-
stream readings taken within Ellejoy Creek and Nails Creek watersheds. I used
unweighted and weighted ECMs in two separate analyses. Weighted ECM results were

used to determine where high nutrient export levels are most frequently occurring within
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watersheds, and whether management needs (e.g., riparian restoration) change between
land cover simulations.

I used results from the unweighted ECM to compare total watershed nutrient
summations and answer the questions: At what watershed extent (4”', 5“‘, or 6™ order
contributing areas) do model results between three land cover datasets become
statistically identical? At what watershed extent does the prioritization of sub-watersheds
for remediation of excessive nutrient flux change between simulations using different
land cover datasets?

The remaining sections of this chapter discuss calibration of each ECM, and their
implementation in the GIS framework. In addition, the chapter discusses a preliminary
statistical analysis in which I attempt to calculate nutrient ECVs of total phosphorus (TP)
and total nitrogen (TN) from in-stream water quality measurements. In this preliminary

analysis, I review the background, methods, and results of ECV calculation.

Export Coefficient Value Calculation

Background and Methods

Based upon the work of Hodge and Armstrong (1993) and McFarland and Hauck
(2001), I use a multiple regression technique for calculating export coefficient values
(ECV) from in-stream nutrient measurements. Drainage areas above each water quality
sampling site within BCLRW contain a mix of land cover types and vary in size (Table
A.3). Ideally, developing ECVs involves several years of field plot observation to isolate

pollutant export from individual land uses (Reckhow et al. 1980; McFarland and Hauck
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2001). Published ECVs have been derived from empirical investigations whereby
researchers conducted three- to ten-year experiments on agricultural, forested, and urban
land uses from several different geographic regions (Beaulac and Reckhow 1982),
including the southeastern United States (i.e., Alabama, Georgia, and North Carolina).
While field plot observations may be the most intuitive approach for estimating ECVs,
watersheds (small and large) include varying land uses; and, as the geographic scale
increases to county- or state-sized areas, monitoring single land use watersheds for
developing ECVs becomes unrealistic. Alternatively, the multiple regression approach
isolates different nutrient-source land uses by associating in-stream constituent
concentrations (mg/L) with surrounding land cover composition such that concentrations
are portrayed as annual exports per land use area by land use type (kg/ha/year).

The multiple regression technique employed by McFarland and Hauck (2001)
assumes a linear relationship between land cover composition within the drainage area
above each sampling site and in-stream constituent concentrations. However, this
method does not account for spatial location of land uses within the drainage area, which
can be problematic in other study areas, such as BCLRW. For example, in drainage areas
where a dairy farming operation is located in the riparian zone immediately upstream
from an in-stream measurement and forest occupies the remaining drainage area, forest
would be assigned a high total nitrogen (TN) ECV (because it occupies a high proportion
of the total drainage area), obscuring the reality that the riparian dairy operation is the
main TN exporter. Therefore, I modified this regression model to only include land

cover within 200 m of the stream, rather than land cover from the entire drainage area.
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The multiple regression model follows a three-step process. First, I calculated the
drainage area above each sampling site, developed a 200-m buffer around all streams
within the drainage area, and tabulated the proportion of land cover composition within
the buffer (Table 2). Drainage area delineation was similar to the ordered watershed
delineation, except calculations originated from each sampling site’s XY coordinates
rather than ordered streams. Because IPSI is the most detailed and up-to-date (ca 2000)
land cover representation available for the study area, I used only this dataset for
depicting land cover within drainage areas. Land cover proportions extracted from the
buffered areas were used as independent variables. I chose a buffer width of 200 m based
on research conducted by the USEPA (2002) in the Clinch and Powell Valley Watershed,
Virginia, which is located within the same physiographic providence as BCLRW.
USEPA (2002) found a strong correlation between riparian land cover and overall stream
habitat where riparian zones extend 200 m across the streams, but weak correlations
where riparian widths were > 200 m.

Second, I annualized concentrations of TP and TN by combining flow volumes
and in-stream constituent concentrations. TP and TN concentrations (mg/L) were
converted to kilograms per cubic meter (kg/m’), multiplied by flow volumes (m*/second),
and portrayed annually (kg/year) to represent a total annual pollutant flux. Annual TP
and TN (kg/year) loads were normalized by the area within each riparian buffer to give
an estimate of nutrient load per area unit (kg/ha/year). Table 3 summarizes these
calculations as average flow volumes and nutrient fluxes for the riparian zone of each

sampling site’s riparian zone. TDEC, for unknown reasons, did not include flow data for
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Table 2: Riparian land cover composition associated with drainage areas above each
sampling site.

Urban Forest Pasture Cropland Barren Land  Total Area

Site (%) (%) (%) (%) (%) (ha)
EC1 4.7 5247 36.9 4.2 0.3 2,531
EC2 42 51.2 38.9 45 0.3 2,171
EC3 6.4 18.7 69.7 28 1.2 412
EC4 37 60.6 32.1 29 0.0 1,468
ECS 4.0 54.1 40.6 1.0 0.0 936
EC6 3.3 82.8 13.8 0.0 0.1 370
EC7 4.0 338 61.7 0.0 0.1 350
EC8 52 79.3 15:5 0.0 0.0 373
LR1 14 93.9 43 0.0 0.0 6,781
LR2 0.0 100.0 0.0 0.0 0.0 5,671
LR3 1.5 92.7 53 0.0 0.1 7,167
LR4 20 91.7 5.7 0.1 0.1 7,939
LRS 33 86.0 9.3 0.0 0.0 1,912
LR6 1.7 88.9 9.2 0.0 0.0 871
LR7 29 88.7 7.1 0.3 0.1 11,296
LR8 9.9 45.8 41.8 1.8 03 1,646
LR9 4.7 52.7 37.0 42 0.3 2,529
LR10 4.2 76.5 16.7 1.2 03 15,889
LR12 52 71.5 20.2 1.6 04 17,600
LTI 10.4 29.6 52.6 7.0 0.2 632
LT2 53 72.1 21.6 0.1 0.1 1,247
NC1 17.1 25.2 533 3.6 0.5 704
NC2 18.0 25.8 52.0 35 04 669
NC3 243 25.8 48.5 0.1 0.8 427
NC4 41.6 22.7 355 0.1 0.0 131
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Table 3: Annualized riparian nutrient fluxes associated with drainage areas above
each sampling site.

Flow Volume TP N

Site m’/yr m*/ha/yr kg/yr  kg/ha/hr kg/yr  kg/halyr
ECl1 18,222,656 7,201 14,855 5.87 56,387 22.28
EC2 13,769,362 6,343 10,970 5.05 40,462 18.64
EC3 2,494,678 6,055 1,993 484 8,911 21.63
EC4 6,462,565 4,401 5,825 3.97 15,750 10.73
EC5 5,885,575 6,289 5,136 5.49 17,486 18.68
EC6 1,586,064 4,282 1,694 4.57 2,644 7.14
EC7 1,821,897 5,211 1,231 3.52 5,592 15.99
EC8 1,166,989 3,127 981 2.63 1,764 473
LR1 6,076,861 896 33 0.00 2,650 0.39
LR2 8,494,537 1,498 139 0.02 1,291 0.23
LR3 2,474,188 345 129 0.02 1,044 0.15
LR4 12,542,246 1,580 263 0.03 9,382 1.18
LR5 18,265,903 9,551 621 0.32 10,558 5.52
LR6 10,571,372 12,139 296 0.34 9,155 10.51
LR7 18,230,583 1,614 547 0.05 14,694 1.30
LR8 1,582,350 962 32 0.02 665 0.40
LR9 7,897,624 35128 142 0.06 2,575 1.02
LR10 71,638,439 4,509 90 0.01 8,955 0.56
LR12 94,349,405 5,361 4,859 0.28 29,720 1.69
LT1 12,538,714 19,830 88 0.14 4,012 6.35
LT2 14,949,325 11,988 149 0.12 12,333 9.89
NCl1 10,285,076 14,611 1,282 1.82 17,995 25.56
NC2 10,915,509 16,310 11,902 17.78 19,864 29.68
NC3 3,174,031 7,438 390 0.91 10,768 25.23
NC4 1,574,901 12,016 171 1.31 4,097 31.26
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LR11, LR13, and LR14 measurements; therefore, these sampling sites were omitted from
the analysis.

Third, I developed a multiple regression model such that loadings per unit area
(kg/ha/yr) at each sampling site were the dependent variable, while proportions of land
use in the stream buffers above each sampling site were the independent variables. The
regression coefficients generated from this analysis may then be used as ECVs in the

ECM.

Results and Discussion of Export Coefficient Value Calculation

Overall regression results indicate that the independent land cover categories do
not explain a large proportion of the variability in TP and TN annual loads (R*=0.10
where a = 0.05). Table 4 illustrates coefficient estimates for the five land cover classes,
the associated standard error, and significance level. None of the TP and TN coefficient
values for the land cover variables were found to be statistically significant. Moreover,
negative TN coefficients produced from the barren land variable are considered
unacceptable as an export coefficient because previous research supports the expectation
of some positive loading from all land cover (Reckhow et al. 1980; Beaulac and
Reckhow 1982; Frink 1991; McFarland and Hauck 2001; Winter et al. 2002). The
McFarland and Hauck (2001) method used land cover proportions from an entire
drainage area above each sampling site, rather than only those found in the 200-m
riparian zone. They found the multiple regression models for TP and TN to be highly
significant (p = 0.0001 and R* = 0.95 where o. = 0.05). I conducted an analysis using

land cover from the entire BCLRW sampling site drainage areas, but still found no
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Table 4: Multiple regression model coefficient estimates for nutrient loadings as
a function of land cover percent in BCLRW.

TN (kg/ha/yr) TP (kg/ha/yr)
Parameter Parameter
L . -Value i -Va
and Cover Estimate p Estimate p-Value
Urban 1.64 +10.05 0.87 0.50 +£0.83 0.55
Forest 0.69+10.10 0.95 0.49+0.85 0.56
Pasture 1.06 £ 10.15 0.92 0.50+0.84 0.55
Cropland 0.79+11.11 0.94 0.94 +0.94 0.32
Barren Land -1.12+23.88 0.96 1.03+£1.92 0.59
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statistically significant coefficient values. Below, I identify three primary reasons for the
lack of significant ECV's from multiple regression that uses land cover from the entire
sampling drainage area or from the 200-m riparian zone.

First, a high level of multicollinearity exists between the independent land cover
variables—particularly between forest and pasture. Most drainage areas within BCLRW
are primarily composed of forest and pasture land; thus, as one increases the other
decreases, creating negative correlations. To limit this, McFarland and Hauck (2001)
simply combined land covers and omitted those land covers that characterized only a
small proportion of the total drainage area. However, land cover within BCLRW has
already been reclassified (see the GIS and Water Quality Data Section) and any further
reclassification would be unreasonable. For example, combining pasture and forest is
unreasonable for predicting annual TN exports because empirical studies have shown
dramatic differences in TN exported from pasture versus forest land (See Chapter II).

Second, in-stream water quality data collected from BCLRW include only three
sampling years (1998, 1999, and 2003), and continuous sampling within each sampling
year does not exceed a six-month period. Data in the McFarland and Hauck (2001) study
were collected bi-weekly and spanned a continuous 4-year period. Moreover, in
BCLRW, all sampling was conducted during base (or low) flow conditions and two to
three days after storm events. A more extensive and continuous BCLRW water quality
survey that included storm events would be more representative of stream dynamics and
might improve regression model results. However, the timeframe of this study prevented
me from conducting a more extensive survey, and the data provided by TDEC were the

only available.
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Third, the multiple regression method (using land cover either from the entire
sampling drainage area or from the riparian zones) assumes that land cover within the
contributing area of each sample contributes 100% of the load flowing through that site.
This assumption is problematic in that it does not consider additional nutrients that
already exist in the stream from upland stream reaches that are beyond the sampling site’s
contributing area or decay that may occur as the nutrient flows through the drainage
network.

The multiple regression model employed in BCLRW was unsuccessful for
determining ECVs in BCLRW. Therefore, I calibrated the ECM with literature-reported
values. Literature-reported values are widely available in a number of USEPA reports
and environmental articles. They vary considerably depending on temporal scale and
geographic region (Beaulac and Reckhow 1982) and thus must be calibrated to the study

area.

Export Coefficient Model Calibration

The ECModeling approach, discussed further in the next section, requires one
ECV for each input land cover class; hence, model results will be dependent on the input
ECV. Nutrient ECVs cited in the hydrologic literature are highly variable; a number of
interrelated factors contribute toward differences in nutrient loads, including climate, soil,
and local land use management. Differences in ECVs may also arise from both
measurement and/or estimation error (Reckhow et al. 1980; Beaulac and Reckhow 1982).

To represent the uncertainty associated with literature-reported ECVs, I conducted a
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sensitivity analysis using ECVs observed in similar climatic regimes as BCLRW.
BCLRW is characterized by a temperate climate, with high rainfall, and primarily clay
and silt loam soils with low infiltration rates (TV A 2003; Eric Henry, personal
communication). Table A.4 illustrates the wide range of ECVs reported for the
southeastern United States. All ECVs presented in Table A.4 were observed in
southeastern regions, where climatic conditions are similar to BCLRW. Using the TP
and TN distributions in Table A.4, I computed minimum, lower, median, upper, and
maximum quartile ECVs for each land cover class (Table 5) (Winter et al. 2000;
Wickham and Wade 2002; Endreny and Wood 2003).

Each quartile ECV (of TP and TN) was modeled individually and compared to
water quality data collected from sampling sites EC1 and NC1 (Figure 5). Because
BCLRW is not entirely defined by natural watershed boundaries, I was unable to
calculate a cumulative nutrient flux for the entire study area. Furthermore, Little River
Watershed sampling locations selected by TDEC in 1998 (Figure 4) did not include a site
located at the river mouth, which would capture loading from the entire drainage area.
Therefore, I have concentrated model calibration on Ellejoy Creek and Nails Creek,
which are smaller sub-watersheds (Figure 5). These two sites are at pour points and
capture water quality for the entire Ellejoy and Nails Creek drainage area. I computed
annual nutrient fluxes (kg/yr) at sites EC1 and NC1 by combining in-stream nutrient
concentrations (mg/L) with flow measurements (m’/sec) (See the previous section—
Export Coefficient Calculation—for more details). Five samples were taken at both EC1
and NC1 between June and November 2003. I repeated the annual flux calculation for

each sample reading. Then, I averaged annual loads from NC1 and EC1 separately and
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summed their quotients. The summation represents the total nutrient load for both
Ellejoy and Nails Creek watersheds portrayed as an annual flux (kg/yr).

In order to compare differences in model results from different land cover
datasets, a common set of ECVs must be selected and used in both models. The
sensitivity analysis allowed me to assess overall change of model prediction by quartile
simulation and choose one set of ECVs. Each simulation was calibrated against the data
collected at EC1 and NC1, and the ECV quartile which produced the best results
compared to observed loading was selected. While lumped summation of total nutrient
load produced from weighted and unweighted ECMs should be similar, I implemented
the sensitivity analysis for these models separately. Assuming that IPSI is the most
accurate land cover dataset, I limited model calibration to this dataset only. Results of

the sensitivity analysis are presented and discussed in Chapter V.

The Unweighted Export Coefficient Model

The traditional ECM (see Equation 1) method considers area and land cover type
for assigning one lumped summation of nutrient export to each sub-watershed, which is a
simple approach that allows the researcher to analyze pollutant export variability between
watersheds and prioritize them accordingly. The broad-scale nature of the unweighted
model is especially useful in regional studies that, for example, examine the degree of
nutrient variability between 1,000 watersheds within a state boundary or between 8-digit
HUCGC:s across the Mid-Atlantic (Jones et al. 1997; Wickham et al. 2002; Wickham and

Wade 2002). However, when examining nutrient risk variability between sub-watersheds
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within a county mapping region, uncertainties in land cover scale arise. In this research,
the unweighted ECM provides a method for examining the level of uncertainty between
land cover datasets in nutrient-loading simulations within a county-sized mapping region.

I implemented an ensemble of unweighted ECM simulations that swapped 10-m
(fine scale), 30-m (broad scale), and 1-km (broad-scale) land cover datasets. The
simulations were employed at the 4™, 5, and 6™ order watershed extent for both TP and
TN. I compiled nutrient model results produced from the three land cover datasets at
multiple watershed extents and statistically tested, using a one-way ANOV A (SPSS
2001), for differences between result-group means. Using the mean, a one-way ANOVA
tests for difference within and between groups and assumes normality within each
dataset. Model results from each land cover simulation were negatively skewed;
therefore, I transformed (natural logarithm) each result-group distribution a priori and
removed outliers—null and zero values (Figures A.1 and A.2). The natural logarithm
transformation will compute null values where original values are zero and negative
values where original values are less than one. Including the negative values will distort
the transformed distribution.

In addition to the ANOVA analysis, I aggregated nutrient export by watershed
into four classes (or rankings) of prioritization and constructed a correlation matrix that
examines changes in the prioritization of watersheds for nutrient export between IPSI-
and NLCD-based simulations. The correlation analysis graphically maps exactly which
and how many watersheds changed prioritization between simulations, allowing for a

better understanding of differences between ECModeling with broad- and fine-scale data.
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The Weighted Export Coefficient Model

Traditional ECModeling methods assume TP and TN exports are homogenously
distributed across the landscape such that each similar land cover type exports the same
nutrient load and 100% of that load reaches surface waters. The traditional ECM
evaluates land cover composition within a watershed, assigns a nutrient ECV to those
land covers (e.g., 2.3 kg/ha/year), and summarizes the total nutrient export for the entire
watershed. Lumped summation of nutrient export by watershed does not allow the
researcher to analyze spatial variability and prioritize risk areas within the watershed. In
raster GIS, this shortfall is emphasized as traditional methods consider each pixel as a
pollution source and do not consider the interaction between the other pixels’ land cover
type and topographic orientation, which either attenuate or accentuate loading levels
(Endreny and Wood 2003).

When modeling broad scales (e.g., county- or state-sized areas), higher order
variables, such as topography and land use begin to control pollutant fluxes and should be
included in hydrologic modeling efforts (Meentemeyer 1989) while keeping modeling
techniques simple (Soranno et al. 1996; Johnes et al. 1996; Sliva and Williams 2001;
Endreny and Wood 2003). The ability to examine heterogeneously distributed nutrient
exports in raster GIS allows the researcher a more detailed modeling technique (e.g.,
ranking 100-m? or 900-m? areas, rather than entire watersheds), while maintaining the
simplicity and timeliness of traditional ECModeling at the county mapping level. The
combination of traditional ECM methods and work by Beven and Kirkby (1979), Beven

(1995), and Endreny and Wood (2003) provide a raster-based ECModeling approach that
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computes topographic (TI) and buffering (BI) indices which dynamically weight ECVs to
these higher order landscape variables and allow the researcher to identify spatial

variability of nutrient export within the watershed.

The Topographic Index (TI)

The raster-based TI model identifies watershed areas that have a high potential of
saturation after a significant rainfall or snowmelt event and thus a high likelihood for
producing runoff. The model uses an index of wetness based on topography to illustrate
the variability in hydrologic response from different areas within the watershed by
determining the relationship between a pixel’s upslope contributing area, per contour

length, and slope. The TI is expressed as:

a

TI‘.=ln[ : J (Eq. 2)

tan B.

where a is the land pixel i’s upslope contributing area per contour length, which assumed
to be equal to pixel size (e.g., 10 or 30 m), and B is land pixel i’s slope angle (Beven and
Kirkby 1979; Beven 1995; Endreny et al. 2000; Endreny and Wood 2003). The TIis
applicable to humid areas, much like eastern Tennessee, where water table levels
presumably follow the same pattern as the topography, and is based on the concept that
runoff is produced as watershed soils become saturated and storage capacity reached
(Dunne and Leopold 1979). Thus, those areas having a high potential of saturation are
highly likely to produce runoff. Subsequent research investigated the spatial distribution

and temporal history of water table levels in the eastern United States and found that the
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TI is a reasonable measure for estimating water table elevation and saturation potential in
humid areas of Pennsylvania (Torch et al. 1993; Homberger and Boyer 1995).

Using elevation data from the DEMs, I generated a TI (with 10-m and 30-m
DEMs) for BCLRW within Arc/Info® GRID®, generating a raster GIS layer that
illustrates high to low values of pixel saturation potential and runoff likelihood. Primary
GRID® functions used include SLOPE, FLOW DIRECTION, and FLOW ACCUMULATION. The
flow accumulation algorithm identifies drainage networks by calculating flow direction
and pixel accumulation on a cell-by-cell basis. It should be noted that values associated
with the output layer from a flow accumulation routine are generic. Flow paths are
identified by the number of pixels accumulated into one another. However, a weight
layer can be used in lieu of simple pixel accumulation. For example, a raster layer that
identifies levels of rainfall lost to runoff per pixel can be included in the GRID® drainage
network computations as a weight layer such that the output pixel value identifies surface
water volumes rather than simple pixel counts (ESRI 2004). In this research, I use a
contour length layer, which has values equal to the DEM’s resolution (10 or 30 m) as a
weight layer in order to calculate the length of upslope contributing areas.

Using a four-step process I constructed TIs from 10- and 30-m DEMs. Figure 7
shows a graphic illustration of the GRID® computations and data utilized for TI
generation, while the discussion below details each computational step.

Step 1 — Preparation of Raster Layers

Topographic depressions (or sinks) in the DEM (NED) were filled such that each

pixel was not completely surrounded by pixels of higher elevation values. Again,

66



"SISeq [[99-£q-[[99 & U0 passad01d pue paje[neAs s 19Ae[ 19)sel yoed "([ID OJU/oIY UIm

uoisidaqg Av

JaAe Jaisey
Asesodwa )

J3Ae Jaisey @

$59201d OJUI/IIY @

ssa%01d days- & sapnjour uonendwos [ ay [, ‘uoneindwos (1) xaput srydeidodo], ;£ am31g

puaban
\ 4
[=]
xepur
[e—# n— &
11 eindwo (p @
A

eary
Bunnguo)
m ybuay
adoys ppy

ealy

Buninquiuo) exid eeinjed (2

adojs

4

adors
whwiuw
=ns

S3A

<&

"

vy
Hi
>
5
(]

4

@
3
B

18

edojg ajejnoe) (g

A

yibua

nowo) W3Q Payitd

i
i

hd *

=195

a ouiS 4
- \h
Jahe| w33
ua) adors e jeas: =
b3} adors @ 2jeasd —

siehen Jeysey esedeid (|

67



depressions in the DEM interfere with flow path extraction and must be filled, which will
be used to determine the lengths of upslope contributing areas.

Step 2 — Upslope Contributing Area Calculation

I extracted a drainage network from the filled DEM using the flow direction and
accumulation algorithms. To identify slope length pixel-by-pixel, I created a contour
length layer, set each pixel’s value equal to the pixel’s resolution, and used it as a weight
layer in the flow accumulation computation. The output layer identified accumulated
slope length across the entire study area; hence, each pixel’s upslope contributing area,
and the numerator (@) in Equation 2.

Step 3 — Slope Calculation

I calculated each pixel’s maximum rate of elevation change to its neighbor as
degrees and computed the tangent of that quotient, which provided the denominator (tan
B) in Equation 2. In preparation for Step 4, I converted all zero slope values equal to the
minimum slope value observed in BCLRW, which will avoid division by zero.

Step 4 — TI Calculation

Finally, I divided the contributing area and slope layers generated in Steps 2 and
3, and calculated the natural logarithm of the quotient to normalize the layer value
distribution. Higher TI values identify those areas where saturation potential and runoff

likelihood are high (Figure 8a).
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Streams
b)

TI and BI Values

High

¥ Low

Figure 8: Topographic and buffer indices map. Mapped accross a 3 x 3 km area, the topo-

graphic index (a) identifies saturation and runoff likelihood, while the buffer
index (b) identifies nutrient retention potential. Higher values in both cases
indicate areas high in runoff likelihood or nutrient retention.
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The Buffer Index (BI)

The BI was built upon the work of Endreny and Wood (2003) and uses a raster
land cover layer and DEM for predicting each watershed pixel’s potential for nutrient
filtration by calculating pixel dispersal areas and relative nutrient trapping ability. The BI
identifies overland flow dispersal areas and estimates relative values for each pixel’s
buffering likelihood using a DEM analysis that determines if each pixel’s runoff actually
enters a vegetative buffer. The Bl is computed as:

N
Z Tpui

BI, =In| 24 Eq. 3
: nB,. (Eq. 3)

where Z T, ,; represents the dispersal area’s total trapping efficiency and B,,; represents

the dispersal area’s average slope. The BI computation combines DEM computed flow
accumulation and slope with pre-determined values of nutrient trapping ability assigned
to each land cover class. I computed Equation 3 for both 10-m and 30-m datasets (DEMs
and land cover) in a six-step process within GRID® using much of the same algorithms
used for the TI model with the exception of some additional processing steps. Figure 9
illustrates a graphic model of the processing steps used for the BI model’s development.

Step 1 — Preparation Raster Layers

In preparing the land cover layers, I calculated a trapping layer of nutrient-
reduction rates set to a fraction that represents buffering capacity and release based on the
land cover dataset. For example, if a forest pixel traps 80% of TP carried by runoff, the

output trapping layer will depict that pixel value as 20% (or 0.2) of that load being
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released. Other researchers report a 40% to 90% reduction in TP by forested field plots 5
to 30 m in length (Uusi-Kamppa et al. 1997). Likewise, observed trapping rates for TN
were estimated to be 60% to 97% in native grassland and forested plots 30 m in length
(Lee et al. 2003). The raster approach to modeling land cover identifies one value for
each pixel that is 10 or 30 m in length; hence each 30-m pixel of forest, for example,
must represent a 900 m? forested area (or trapping plot). Therefore, I base the selection
of trapping percentages (Table 6) on plot size (or resolution of the input data). Finer-
resolution data (e.g., [PSI) were assigned lower trapping values, while broader-resolution
data (e.g., NLCD) were assigned the higher values. I was unable to acquire any
additional research that provided more support to the observations made by Uusi-
Kamppa et al. (1997) and Lee et al. (2003). Additional literature would make it possible
to examine variability in nutrient retention values between different climatic and
physiographic regimes. Also, additional literature-reported nutrient retention values
could have been included in the sensitivity analysis, which would help to calibrate the BI
with nutrient retention characteristic of BCLRW.

The grass plots observed by Uusi-Kampp et al. (1997) and Lee et al. (2003)
included native grass and switchgrass species. All grassland within BCLRW is classified
by IPSI and NLCD as pasture. Of the pasture I observed during water quality surveys, all
appeared to be active grazing land. Un-grazed/un-maintained pasture patches, which
may function like native grass and switchgrass species in reducing nutrient loads, are
uncharacteristic of BCLRW because of the limited land suitable for agricultural practices

available to farmers (Eric Henry, personal communication).

72



Table 6: Nutrient retention values by land cover class.

IPST NLCD
TP TN TP TN
Urban 1% 1% 3% 3%
Forest 40% 40% 95% 95%
Pasture 5% 5% 15% 15%
Cropland 1% 1% 3% 3%
Barren Land 5% 5% 15% 15%
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Assuming that a minimal amount of nutrient retention occurs in pasture, I
conservatively assigned minimal retention values (1% and 3%) to TP and TN in pasture.
Likewise, urban areas and barren land may contain patches of filtering vegetation (such
as forest within a golf course); however, the scale of the three land cover datasets is too
coarse to depict such a detailed classification, and urban areas consist of more complex
runoff systems (e.g., sewer systems) that will divert runoff away from any retention
opportunities and complicate the retention process. Therefore, I have assumed that
forest—woody vegetation, shrub lands, and wetlands—is the only significant filtering
land cover within the six-class scheme. Urban, cropland, and barren land cover were also
assigned minimal retention values because no existing literature provides evidence that
they significantly contribute to the retention of TP and TN transported via runoff.

In preparing the filled DEM for dispersal area delineation, I created a stream layer
and an inverted DEM. The stream layer was calculated from the flow direction and
accumulation algorithms and was manipulated such that all high-accumulation pixels (>
500) were set to zero. Streams are the destination for nutrients transported via overland
flow; therefore, the final BI layer must identify all streams as zero or null. To be
consistent with the streams used in sub-watershed delineation, I used only streams
extracted from the 10-m DEM in both 10- and 30-m BI analysis.

The inverted DEM was calculated by multiplying filled DEM values by -1, which
portrayed all ridges as low-lying valleys and valley bottoms as ridge tops. This layer is
crucial for identifying a pixel’s dispersal area, and the total length of that dispersal area.
The flow direction and accumulation routines determine the direction and accumulation

of flow from higher to lower elevation, hence each pixel’s upslope-contributing area.
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The inverted DEM enables the same calculations to be made except in reverse, thus
determining pixel dispersal areas.

Step 2 — Calculate Total Drop in Slope from Pixel to Nearest Stream

I used the slope algorithm to generate a maximum change (or drop) in slope layer
such that all stream-pixel values are set to zero. I then calculated flow accumulation
using the filled DEM and slope layer as a weight layer, which generated a layer
identifying the total (or accumulated) drop in slope from every terrain pixel to the nearest
stream. Stream pixels within this layer were then set to the minimum-slope value, which
is in preparation for avoiding division by zero in Step 4.

Step 3 — Determine Pixel Dispersal Area Length.

In this step, [ used a contour-length layer as a weight layer and inverted DEM
within the flow accumulation algorithm to calculate each pixel’s total dispersal-area
length (or run) from each terrain pixel to the nearest stream. The contour-length layer
assumes that contour length at each raster-pixel location is equal to the resolution (or
length) of each pixel. As in the computation in Step 2, incorporating a weight layer of
contour length allows the flow accumulation routine to assign each pixel a value
indicating accumulated length from that pixel to the nearest stream. To avoid division by
zero in Step 4, stream-pixel values within the resulting layer were set to one.

Step 4 — Compute Average Slope in Dispersal Area

The denominator in the Equation 3 was obtained by dividing the two flow
accumulation layers obtained from Steps 2 and 3—the total change in elevation, and the
dispersal-area length. The streams in the subsequent layer were set to zero by identifying

their spatial location in relation to the streams created in Step 1. In other words, all

75



stream pixels in the denominator layer that share the same spatial location as the stream
layer were set to a value of zero, while all other pixels maintained their value.

Step 5 — Determine Nutrient Filtration within Dispersal Area

The trapping layer computed in Step 1 was further processed for deriving the total
nutrient reduction within each pixel’s dispersal area. A zero stream layer and trapping
layer overlay identified all stream pixels within the trapping layer. The trapping layer
was then included in a flow accumulation (using the inverted DEM) routine as a weight
layer to identify an accumulated amount of trapping within each pixel dispersal zone.
Again, this step excluded all streams, which were assigned a trapping value of zero.

Step 6 — Determine Nutrient Filtration in Dispersal Area

Finally, I generated the BI layer by computing the natural logarithm of the total
nutrient filtering (numerator) and the average-slope-in-dispersal-area (denominator)
quotient. The natural logarithm is computed in order to collapse the spread of the BI
distribution. Higher raster values identify the pixels with a higher likelihood of nutrient
filtration (Figure 8b). Typically, ridge tops within forest cover have high-BI values
because of their large dispersal area. Overland flow associated with larger dispersal areas
and forest cover has a longer traveling time to reach streams and thus has more

opportunities to become trapped.

Normalization of Topographic and Buffer Indices
The BI and TI were used to map hydrologically sensitive areas in BCLWR.
Because the weighted ECM models nutrient variability within sub-watersheds, TI and BI

datasets must first be normalized such that each sub-watershed’s cumulative nutrient load

76



is equal to that of its weighted nutrient load (Endreny and Wood 2003). The

normalization is computed as: (Eq. 4
11,
NTI, = —
T7
(0]
NBI, =21
BI,

where @ indicates the median BI or TI value. The median was used rather than the mean
because TI and BI (both 10-m and 30-m) consisted of skewed value distributions. This
weighting scheme requires a median value from each watershed used in the analysis,
which allows for normalized TI and BI values to override one another once placed in the
final ECM equation. However, the normalized TI and BI distribution must be somewhat
similar for the weighting scheme to work correctly (Endreny and Wood 2003).
Normalized 10- and 30-m BI distributions for BCLRW included both negative
and positive values. This is problematic because a negative BI value will result in
negative nutrient exports and all watershed pixels, in this research, are assumed to be
associated with a positive export. The negative BI numbers are calculated during natural
logarithm computation. High retention values assigned to the forest land cover result in
low nutrient release rates. During natural logarithm calculations, lower values (e.g., <
1.0) are computed as negative. I compensate for this problem by shifting the BI
distribution so that all BI values are positive and similar to the TI distribution. Again, the
weighting scheme identifies relative (pixel-by-pixel) nutrient export, allowing the
researcher to prioritize nutrient areas and not to report accurate export amounts.

Furthermore, negative nutrient export values could be considered as hydrologic sinks;
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however, in this research, I assume that sinks >900 m? are unlikely to occur in eastern
United States regions (Mark 1988). While sinks of 100 m? have the potential to exist in
areas similar to BCLRW, I did not include them in the analyses because of the broad

scale nature of ECModeling.

Weighted Export Coefficient Model Application

The weighted ECM analysis will evaluate each watershed pixel’s terrain
orientation, downslope trapping ability, and land cover for determining relative nutrient
export pixel-by-pixel, generating a single raster GIS layer. The resulting NTI and NBI

values were used in Equation 1 as:
N
Ly =Z[(EI*NTII*NBI:')*A1'] (Eq. 5)
i=1

where L is the summarized load for watershed N, E is the ECV for watershed pixel i, NTI
and NBI are the normalized topographic and buffer indices for watershed pixel 7, and 4 is
the area of watershed pixel i. The area of each watershed pixel remained consistent (100-
and 900- m?). While the cumulative load calculations in Equation 1 and Equation 5 are
similar, I chose to implement two separate ECMs in this research to save computer-
processing time. TI and BI generation for large areas with multiple datasets (e.g., 10-m
and 30-m raster layers) at multiple watershed extents (e.g., 4™, 5", and 6" order
watersheds) can be time-consuming. Analyzing cumulative loadings for the entire study
area with Equation 1 versus Equation 5 minimizes processing time.

Unlike the unweighted ECM, the GIS layer produced from the weighted ECM

allows the researcher to visualize where high nutrient exports are originating within the
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watershed (e.g., in the riparian zone or on concave hillslopes) and then begin to consider
different management scenarios (e.g., riparian reforestation, pasture improvement, etc.)
for mediating the area (Figure 10). Once a particular best management practice (BMP)
has been identified, a management team can then verify the decision with field surveys.
By swapping land cover datasets during weighted ECM simulations, I can determine (1)
if broader-scale-based (e.g., NLCD and 30-m NED) results are appropriate for making
the same decisions regarding potential BMP scenarios, and (2) whether usable loading
information can be extracted from critical areas—such riparian zone loading—compared
to results using finer-scale data (e.g., IPSI and 10-m NED).

I implement the weighted ECM in only three sub-watersheds that exhibit low,
moderate, and high nutrient loading with IPSI and NLCD, which were identified by the
unweighted ECM analysis. LULC-AVHRR was excluded from this analysis because the
large pixel resolution (1-km) is not practical for prioritizing risk areas within sub-
watersheds. Using IPSI and NLCD, I was able to visualize the areas where nutrient flux
was originating (i.e., in the riparian or non-riparian zone) and consider different BMP
scenarios. I based riparian buffer widths on stream order. First- and second-order
streams were assigned buffer widths of 50 m; whereas, third-, forth-, and fifth- order
streams received buffer widths of 100 m. It was necessary to decrease the riparian-zone
widths from the width suggested by USEPA (2002) because within smaller sub-
watersheds a 200-m buffer will occupy most of the total area. The sub-watershed extent
(e.g., 4™ or 5™ order sub-watersheds) for this analysis was based on results from the
unweighted ECM analysis. In Chapter IV, I further discuss these three sub-watersheds

and results from calibration, unweighted, and weighted ECM analyses.
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Figure 10: Unweighted vs. weighted ECM nutrient export map. Mapped within a 1 km’
section of BCLRW, the (a) unweighted ECM only accounts for land cover

type; whereas, the (b) weighted ECM accounts for topographic orientation
and nutrient retention.
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CHAPTER V
RESULTS

This chapter presents three sets of results from: (1) Export Coefficient Model
(ECM) calibration analysis, (2) unweighted ECM statistical analysis, and (3) weighted

ECM analysis.

Calibration Analysis: Export Coefficient Value Selection

The calibration analysis included both unweighted and weighted ECMs. In both
cases, the set of median total phosphorus (TP) and total nitrogen (TN) export coefficient
values (ECV) from Table 5 yielded comparable results to observed loads in Ellejoy Creek
(EC1) and Nails Creek (NC1) watersheds (Figure 11; Table A.5). Using median ECVs, |
found the unweighted ECM results to be within 5% of observed loads, and weighted
ECM results to be within +12% of observed loads. Table A.5 illustrates absolute loading
values produced from all ECV quartile simulations. Figure 11 indicates that both
unweighted and weighted ECM simulations, using the median set of ECVs, slightly
underestimated observed nutrient loads. While slightly increasing ECVs would
compensate for this underestimation, I felt the variation between observed and simulated
loadings was minimal and chose to use only the median set of ECVs in the BCLRW-
ECMs.

In this analysis, I used only the IPSI land cover because this research assumes that

IPSI (ca. 2000) is the most accurate representation of land cover in BCLRW. A
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Figure 11: ECM calibration results. Difference between observed loadings and loadings
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calculated in the (a) unweighted ECM using median ECVs were -0.9% (TP)
and -5.0% (TN). Likewise, difference between observed loads and loads
produced by the (b) weighted ECM were -0.5% (TP) and -12.0% (TN).



preliminary calibration analysis using NLCD also suggests the median ECVs yield results

closest to the observed loads.

The Unweighted Export Coefficient Model Analysis

ANOVA results indicate a significant difference (p = 0.0001 o = 0.05) between
IPSI-, NLCD-, and LULC-AVHRR-based simulation results when modeling TP and TN
at the 4™, 5™ or 6™ order watershed mapping extent. Figures 12 and 13 illustrate that,
while the difference between land cover simulation groups decreases as spatial extent is
broadened, difference in nutrient loading as simulated within land cover groups increases
with the change in watershed extent. This phenomenon is related to spatial data
aggregation, and the modifiable aerial unit problem (MAUP) (Jelinski and Wu 1996).
Statistically significant differences between the three groups, however, are obviously due
to extreme variation between the LULC-AVHRR-based results and the IPSI- and NLCD-
based results. This suggests that general landscape patterns of nutrient export are
statistically lost between 10-m or 30-m and 1-km data.

Therefore, I conducted a second ANOVA analysis in which LULC-AVHRR-
based results were excluded. Using only IPSI- and NLCD-based results, the ANOV A
test indicates that result groups are statistically significantly different only at the 4™ order
watershed extent (Table 7). Differences between TP and TN model results produced
from IPSI and NLCD at the 5™ and 6™ order mapping extent are not statistically
significant, which implies the 5™ order mapping extent is the threshold mapping scale at
which differences in broad- and fine-scale (e.g., IPSI and NLCD) model results are not
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Figure 12: Difference within and between land cover-based TP simulation results.
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Table 7: Statistical differences in unweighted ECM results
between IPSI- and NLCD-based simulations.

TP p-Values TN p-Values
4% Order 0.001* 0.0001*
5" Order 0.082 0.25
6™ Order 0.574 0.331

* Denotes statistically significant differences between groups with 95% confidence.



apparent. Because ANOV A assumes normality within and equal variance between each
dataset (SPSS 2001), I transformed each ECM-result dataset using the natural logarithm
(Figures A.1 and A.2) and tested for homogeneity of variance using the Levene statistic.
The homogeneity of variance test indicated that all data distributions consisted of
statistically equal variances (o = 0.05).

Although modeling TP and TN at the 4™ order watershed extent produces results
from NLCD that are statistically different than results from IPSI, it is important to
consider the difference in the prioritization of watersheds for nutrient flux that occurred
between model simulations using NLCD and IPSI. Figures 14 to 19 illustrate differences
in the prioritization of watersheds between 4"‘, 5"‘, and 6 order watersheds. I
categorized total watershed nutrient export into four classes, which were developed from
natural breaks in the modeled TP- and TN-result distributions (Figures A.2 and A.3;
Table A.6). TP and TN value distributions produced from ECM simulations vary
considerably between land cover datasets.

Patterns of nutrient flux are a function of land cover locations. Classification
schemes, such as quantiles or equal intervals, assign an equal number of watersheds to
each grouping. While this may be ideal for comparing multiple datasets, it causes
undesirable representations of nutrient flux by associating, for example, a high rank to
forested watersheds that have lower exports. This would contradict empirical evidence
that has shown strong negative correlations between forested cover and nutrient flux (See
Chapter II). On the other hand, the natural breaks classification scheme assigns breaks to
small groups that are inherent to each dataset (ESRI 2004). Because BCLRW 4™, 5™ and
6™ order watersheds vary considerably in size, I normalized the cumulative loads per
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watershed (kg/yr) by watershed area (kg/ha/yr). The four-class aggregation can be
viewed as four degrees of prioritization.

Overall, TP and TN simulations reveal that while the nutrient fluxes of 4™ order
watersheds statistically differ between all three land cover dataset simulations, maps that
prioritize watersheds for nutrient flux illustrate minimal differences between IPSI- and
NLCD-based simulations. As watershed extent broadens to 5™ and 6™ order watersheds,
differences in watershed prioritization between IPSI- and NLCD-based simulations
become less apparent. Although the prioritization of watersheds for TN in LULC-
AVHRR-based simulations differs from those based on IPSI and NLCD (Figures 17c¢ to
19¢), general patterns of TN loading across the landscape are not lost. However, the
prioritization of watersheds for TP derived from LULC-AVHRR-based simulations
(Figures 14c to 16¢) does lose general patterns of nutrient loading; therefore, I excluded
LULC-AVHRR from the correlation analysis and included only IPSI- and NLCD-based
results, which are strongly correlated (R? = 0.95) (Figures 20 and 21).

Figures 22 and 23 illustrate the relationship between results from the IPSI- and
NLCD-based simulations by mapping watersheds that showed different prioritizations
nutrient flux. The color-coding scheme shows the degree of difference between land
cover dataset simulations. Greatest change (red) represents a two- or three-category
switch between IPSI- and NLCD-based model results, moderate change (beige)
represents a one-category switch, and green represents no switch. For example, if a
simulation using IPSI prioritizes a given watershed in the first category and the
simulation using NLCD prioritizes that watershed in the fourth category, the correlation

result is a three-category switch and a high degree of change. Overall, at the 4™, 5", and
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6™ order extents, differences in prioritization of watersheds for both TP and TN flux
occur primarily in mixed land cover watersheds. Watersheds that include multiple types
of land cover exhibit more variation in land cover identification and therefore more
variation (within the dataset) in nutrient loadings.

Fourth-order watersheds exhibit the most difference in TP and TN watershed
prioritization between IPSI- and NLCD-based simulations (Figures 22a and 23a).
Roughly 26% of the 4™ order watersheds modeled for TP changed prioritization category
between the simulations, while 19% changed during TN model simulations. However,
differences in prioritization classes for TN were only moderate, and differences in
prioritization classes for TP were primarily moderate, with some areas of extreme change
that occupied only 3% of all watersheds and were confined to areas averaging 1-km?.

At the 5™ order extent, the degree and frequency of prioritization difference
decreased (Figures 22b and 23b), which indicates that as the spatial mapping scale
increases, the degree and frequency of model differences simulated from IPSI and NLCD
become less apparent. TP and TN both exhibit moderate degrees of change at the 5™
order extent, in which 22% (TP) to 14% (TN) of all watersheds switched prioritization
ranking between model simulations.

Correlations between 6™ order watershed simulations reveal a continued decrease
in the frequency of TN prioritization difference between IPSI-based and NLCD-based
simulations (Figure 23c). Simulated TN export risks from 6™ order watersheds differ in
only 4% of all watersheds, which indicates that as spatial mapping scale increases the
differences in the prioritization of watersheds for TN flux become less apparent between

IPSI- and NLCD-based simulations. However, simulated TP export risks differ in
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roughly 29% of all 6™ order watersheds. It should be noted that most of 6 order TP
change occurs along the Blount County border, which is not a natural hydrologic
boundary and includes portions of drainage areas that extend beyond the study area. The
difference in total watershed area from one 6™ order watershed to the next is problematic
for comparing the change in watershed prioritization categories between land cover

dataset simulations and will be discussed further in Chapter VI.

The Weighted Export Coefficient Model Analysis

Unweighted ECM results suggest that the 5™ order watershed extent is the
threshold at which IPSI- and NLCD-based model results are statistically similar (Table
7). For modeling nutrient export within watersheds, I selected three 5™ order sub-
watersheds (Figure 24) as study sites because they (1) exemplify low, moderate, and high
nutrient export areas, (2) occupy similar nutrient (TP and TN) load rankings between
IPSI and NLCD-based simulations (Figures 14 and 19), and (3) do not change watershed
prioritization between IPSI- and NLCD-based simulations (Figures 22 and 23). Figure
24 shows that each sub-watershed includes varying degrees of land cover and terrain; the
low-risk watershed incorporates primarily forest cover, while moderate- and high-risk
watersheds include a mix of primarily agricultural and urban cover.

Weighted ECM simulations within 5™ order watersheds using both 10-m and 30-
m data indicate that the greatest risk of nutrient loading occurs in areas characterized by
gently rolling slopes, large upslope-contributing areas, and dispersal areas free of forest

cover. Comnfields, grazing land, and urban land situated on concave landforms with few
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vegetative buffers have high runoff potential (high TI values) and low nutrient trapping
likelihood (low BI values) (Endreny and Wood 2003), thus assigning a more significant
weight to the ECV. Two sets of data were used in this analysis: (1) ISPI land cover and
10-m National Elevation Data (NED) (fine scale) and (2) NLCD and 30-m NED (broad
scale). Iidentify high nutrient-risk areas by exwracting pixel (or loading) values, within
each watershed’s loading distribution, that are greater than the 25-percentile pixel value.
TP- and TN-loading distributions within all three watersheds are highly variable between
datasets and present negatively skewed distributions; hence, I could not choose a single
pixel value as the high loading threshold for all three watersheds. Based on the natural
breaks in each watershed’s loading distribution, I noted within each distribution where
pixel values began to exhibit high annual levels of TP and TN export compared to the
lower distribution values. Within all three distributions the 25 percentile value (Table 8)
provided a distinct break in the data. I used this break as a threshold and considered
those nutrient values (or pixels) greater than the 25-percentile value to be high in export.
Several differences are apparent between the 10-m and 30-m weighted ECM
simulations. I found that, in all three watersheds, weighted ECM simulations using 10-m
data identify areas outside the riparian zone—which ranges from 100 m to 50 m in width
depending on stream order—as the primary origins of nutrient flux. Conversely,
simulations using 30-m data identify only high- and moderate-risk watersheds as having
greater origins of nutrient flux outside the riparian zone (Table 9). When considering
absolute nutrient fluxes, I found that weighted ECM simulations using 30-m data
simulation does not compare well to the 10-m simulations. Within each watershed’s

riparian zones, simulations using 30-m data capture only 9% (TP) and 23% (TN) of the

102



Table 8: Twenty-fifth percentile nutrient loading values.

TP (kg/pixel) TN (kg/pixel)
Watershed IPSI NLCD IPSI NLCD
Low Risk 0.05 1.18 0.32 3.79
Moderate Risk 0.06 0.31 0.30 1.81
High Risk 0.05 0.29 0.29 1.81
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Table 9: Percentage of each risk-watershed's total area associated with a high nutrient

loading.
a) TP Export
Low-Risk Moderate-Risk High-Risk
IPSI NLCD IPSI NLCD IPSI NLCD
(%) (%) (%) (%) (%) (%)
Riparian Zone 0.45 0.16 0.47 0.47 1.80 0.97
All Other Areas 0.93 0.07 1.20 1.43 5.54 7.68
b) TN Export
Low-Risk Moderate-Risk High-Risk

IPSI NLCD

IPSI NLCD

IPSI NLCD

(%) (%) (%) (%) (%) (%)
Riparian Zone 0.38 0.09 0.46 1.18 1.43 0.88
All Other Areas 0.40 0.03 2.56 1.99 4.00 4.48
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total nutrient-risk-area load identified by simulations using fine-scale data. Similarly,
throughout each watershed’s entire area, 30-m data simulations capture only 9% (TP) and
11% (TN) of the nutrient-risk load identified by fine-scale data.

However, visual comparisons between 10-m and 30-m data simulations compare
fairly well for prioritizing nutrient areas in the lowlands of each watershed (Figures 25
and 26). Figures 25 and 26 illustrate that simulations with 30-m data are less dispersed
and do not capture smaller patches of nutrient risk in upland regions as do those modeled
with 10-m data. Moreover, the low-risk watershed is the most problematic for 30-m data
simulation (Figures 25c¢ and 26¢). Within the low-risk watershed, simulations using 30-m
data do not capture urban and agricultural areas, which are potential producers of
excessive nutrient flux, situated in rugged, upland terrain. Management teams using a
nutrient-risk map created from 30-m ECM simulations (e.g., Figure 25¢) would be
directed to low-lying riparian zones as primary sources of nutrient risk, not considering
the TP-export risk areas associated with upland portions of the watershed that are only
identified simulations using 10-m data. Therefore, a management-team could
presumably consider a different best management practice (BMP) if the decision-making
process relied on 30-m ECM results. However, within moderate- and high-risk
watersheds—which include low-lying terrain and mixed land cover types—differences in
nutrient-area prioritization become less apparent and general patterns of nutrient flux are
similar between 10-m and 30-m simulations (Figure 25a/b and 26a/b).

Watershed management implications from the analysis results presented are

critical when considering the different types of data available for GIS/hydrologic
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modeling efforts. Chapter VI discusses important implications of the results obtained and

limitations encountered in this research.
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CHAPTER VI
DISCUSSION AND CONCLUSION

Research Implications

Scale and Data

The Blount County and Little River Watershed (BCLRW) unweighted export
coefficient model (ECM) analysis supports the hypothesis that broad-scale land cover
data (e.g., 30-m NLCD) are appropriate for spatial prioritization of nutrient-risk areas at
the county-mapping scale. Findings from this research strongly suggest broad-scale data,
such as NLCD (30-m), produce model results that can be used in decision making-
processes. On the other hand, global-scale data, such as LULC-AVHRR (1-km), as
expected, produce model results that do not capture general patterns (compared to NLCD
and IPSI) of nutrient-risk at the county-mapping scale. Using freely available NLCD
within a GIS-based ECM in study areas similar (terrain, climate, hydrology, etc.) to
BCLRW, management teams can confidently prioritize sub-watersheds for remediation,
and not incur the expenses associated with developing costly, fine-scale (e.g., 10-m IPSI)
data.

This research suggests the 5™ order watershed extent is the threshold at which
broad-scale data produce model results that are statistically (o = 0.05) similar to results
obtained from fine-scale (IPSI 10-m) simulations (Table 7); this will assist watershed
managers in determining a minimal-mapping extent for modeling nutrient export with

broad-scale data. Although modeling smaller watersheds (e.g., < 4™ order) with NLCD is
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not statistically appropriate, watershed prioritization differences between NLCD- and
IPSI-based simulations (Figures 22 and 23) are moderate and apparent in only 22% (total
phosphorus) to 19% (total nitrogen) of all 4™ order watersheds. Fourth-order watersheds
that were modeled for total nitrogen (TN) did not contain any extremely different
prioritizations (those areas that exhibit a two- or three-category switch) between land
cover simulations. Conversely, in 3% of the 4™ order watersheds modeled for total
phosphorus (TP), prioritization changes between simulations were great. While 3% is not
an alarming amount, it should be noted the 4™ order watersheds that exhibited great
difference in prioritization for TP flux are relatively small (in area) compared to other 4™
order watersheds (Figures 6), and small-area watershed delineation within GRID® is
susceptible to erroneous stream ordering or flow path extraction. Prior to the analysis, I
examined the stream network within these watersheds and found streams to be properly
ordered; however, whether or not errors exist within the DEM is unknown. Systematic
errors, although limited by NED (See Chapter III), may interrupt polygon construction
during the watershed delineation calculations, creating smaller, unwanted polygons.
Findings from the unweighted ECM analysis reveal patterns of spatial data
aggregation that could lead a researcher or watershed manager to different conclusions
when modeling water quality at broad scales as opposed to fine scales. For example,
Figures 12 and 13 show variation within each set of land cover-based nutrient loading
results at the 4™, 5™, and 6™ order watershed mapping extents. The box plots associated
with each set of model results suggest that as watershed extent increases, for example,
from 4™ order (Figure 12a) to 6™ order (Figure 12c), the variation within each set of
simulated loadings also increases. This spatial phenomenon is characteristic of the
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modifiable areal unit problem (MAUP), which is related to scale and which suggests that
with each combination of similar areal data aggregated into several sets of larger areal
units, different conclusions may be made (Jelinski and Wu 1996). For example, consider
modeling watershed-cumulative-nutrient loadings for 6™ order watersheds with the same
nutrient export data used for 4™ order watersheds: Model results at the 6™ order extent
will produce more varying nutrient loadings than those at 4™ order extents because they
cover a larger areal unit and include a variety of landscape variables (e.g., land cover)
from one watershed to the next. On the other hand, 4™ order watersheds cover smaller
areal units and, presumably, do not include such a variety of landscape variables;
therefore, their simulated values will not vary as much as the 6™ order results. Watershed
managers should consider the degrees of nutrient variation observed within each 4™ and
6™ order watershed simulation (Figures 12 and 13) because using these two areal units
may lead to different overall conclusions of water quality health. Jelinski and Wu (1996)
summarize different statistical and non-statistical methods for dealing with MAUP into
four approaches: the “basic entity approach,” “optimal zoning approach,” “sensitivity
analysis approach,” and “visualization approach.”

Correlation results presented in Figures 22 and 23 exhibited minor changes in the
prioritization of watersheds for nutrient flux between IPSI- and NLCD-based unweighted
ECM simulations. Correlations between these land cover datasets at broader extents
(e.g., 8™ order) across region-sized areas will presumably result in even less prioritization
change, suggesting that fine-scale data development for a regional area would be
unnecessary. Additionally, LULC-AVHRR-based model results do not reveal the same
patterns of nutrient export as NLCD- and IPSI-based results. However, I expect that, at
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the regional extent, unweighted ECM runs with LULC-AVHRR will better correlate to
NLCD- and IPSI-based results, producing nutrient loading results that are more usable

for decision-making processes. The scope of this research does not include regional

analyses of LULC-AVHRR.

Differences in Nutrient Between Sub-Watersheds

Differences in the prioritization of watersheds for nutrient flux between IPSI- and
NLCD-based unweighted ECM simulations (Figures 22 and 23) occurred primarily in
mixed watersheds. Therefore, managers must consider which areas they are most
interested in; if targeted watersheds incorporate mostly urban areas, for example, then
using NLCD in simulations at the 4™ order extent are appropriate. However, if the
primary areas of concern are mixed land cover watersheds, then unweighted ECModeling
with NLCD may produce undesirable results—those that exhibit the greatest changes
(two- or three-category switch) in watershed prioritization compared to watershed
prioritization produced from fine-scale land cover.

Change in risk categories from TP and TN simulations support the theory that as
spatial scale broadens, fine-scale entities still exist but are not apparent (Allen et al.
1987). Model results reveal a decreasing trend in prioritization change as the spatial
extent increases (Figures 22 and 23), which parallels this concept. For example, I
calculated the percentage of watersheds from Figures 22 and 23 that changed
prioritization class between IPSI- and NLCD-based unweighted ECM simulations. In the
case of TN-export prioritization, the percent of watersheds that changed prioritization
class between land cover simulations decreased from 19% (4th order) to 4% (6th order).
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This suggests that as spatial extent is broadened, differences in fine- and broad-scale
model results become less apparent.

However, in the case of TP-export prioritization, this pattern was not observed;
the percent of watersheds that changed prioritization category decreased from 26% 4"
order) to 22% (5™ order), but, at the 6™ order extent, the percentage increased to 29%.
One reason is that most 6™ order watershed prioritization (for TP) change occurred along
the Blount County border, which is not a natural hydrologic boundary. Ihad to c/ip sub-
watersheds that extended beyond the Blount County boundary (See Chapter III), leaving
small, erroneous watersheds. The drastic difference in total area between these erroneous
watersheds and fully developed 6™ order watersheds can be problematic for determining
changes between model simulations. For example, small erroneous watersheds (< 5 km?)
are assigned cumulative-nutrient exports based on the number and type of underlying
land cover pixels. Within smaller areas, 30-m land cover datasets will contain a lower
pixel count and a lower diversity in land cover type. Finer-resolution (10-m) land cover
datasets will contain higher pixel counts and may include more diversity in the land cover
type, leading to differences in calculated nutrient loadings. In finer mapping extents,
such as 4™ order watersheds, erroneous watersheds are still apparent; however, fully
developed 4™ order watersheds are small, and differences between erroneous and fully
developed watersheds are moderate. If all watersheds were fully developed, I would
expect to see the percent of prioritization class change between IPSI- and NLCD-based
simulations decrease as spatial extent increases—similar to the pattern observed in the

TN prioritization change.
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Differences in Nutrient Loading Within Sub-Watersheds

Broad-scale data used in the weighted ECM analysis included NLCD and the 30-
m Nation Elevation Dataset (NED), whereas fine-scale data included ISPI and 10-m
NED. In general, weighted ECM runs (within low-, moderate-, and high-risk 5™ order
watersheds) using 30-m and 10-m datasets show high nutrient originating areas to be
associated with agricultural/urban cover situated on concave landscapes outside the
riparian zone (Table 9). It should be noted that temporal differences exist between IPSI
(ca 2000) and NLCD (ca 1992). The low-risk watershed incorporates primarily dense
forest cover with few patches of agriculture and urban cover (Figure 24). Moving from
low to high nutrient-risk watersheds, urban areas become the dominant land cover.
Between 1992 and 2000, total population in Blount County increased 23% (U.S. Census
2000); because low-risk watersheds include primarily forest, small amounts of land cover
change would have occurred during the intervening years. However, watersheds with
mixed urban and agricultural land experienced the most change due to increasing urban
growth and decreasing agricultural operations (USDA 1997), thus changing the
conditions of nutrient loading.

Within all three watersheds, quantitative comparisons between absolute nutrient
loadings of all high-risk areas identified by 10-m and 30-m based simulations are
extremely different. Only 9% (TP) to 11% of the high-risk loadings modeled by 10-m
data were captured by the broad-scale data. Moreover, within the riparian zones of each
watershed, 30-m data simulations only captured 9% (TP) to 23% (TN) of the absolute
loadings identified by fine-scale data. However, visual comparisons of nutrient risk
(rather than absolute counts) (Figures 25 and 26) show that general patterns of
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prioritization are maintained between 10-m and 30-m data simulations in gently-rolling,
lowland terrain. Again, the ECM is a scoping model, which is intended for nutrient
prioritization due to the high amount of uncertainty associated with export coefficient
values (ECV) rather than absolute nutrient-load reports (Reckhow et al. 1980; Endreny
and Wood 2003).

It should be noted that modeling with 30-m data in the low-risk watershed creates
the most problems for capturing the similar patterns of nutrient prioritization produced by
10-m datasets. One reason is that BCLRW’s low-risk watersheds incorporate rugged
terrain with many concave and convex landforms (Figure 24c). Broad-scale NED (30-
m)—included in TT and BI computations—do not contain the level of detail (compared to
10-m NED) necessary for capturing fine-scale hydrologic processes, such as upland flow
paths. TI and BI computations rely on a flow direction algorithm that uses the D-8
method (or steepest decent) for determining flow pathways (O’Callaghan and Mark 1984,
ESRI 2004).

In this research, I use flow direction and accumulation algorithms for (a) stream
extraction, and (b) determining biophysical processes within pixel upslope-contributing
and downslope-dispersal areas (explained in Chapter IV). In the T and BI computations,
the streams layer was used to identify areas within the watersheds that do not contribute
to nutrient flux. I used only streams extracted from the 10-m NED in both the fine- and
broad-scale computations for TI and BI to keep consistency between ordered streams and
delineated watersheds. However, when determining pixel contributing and dispersal
areas, I use the NED that corresponds with the fine- (10-m) or broad-scale (30-m) dataset.
In other words, although I used the flow direction/accumulation algorithm to extract
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streams from only the 10-m NED, I computed pixel contributing and dispersal areas
(used in TI and BI computations) with 10- and 30-m NED, which had an effect on final
nutrient export computations. Conversely, moderate- and high-risk watershed terrain
includes gently-rolling slopes and less detail in concave and convex landforms; hence,
less detail is needed for weighted nutrient modeling.

Because elevation data are a primary driving factor in the weighted ECM,
integrating the 10-m NED and NLCD within the model could, presumably, produce
model results closer to those produced with IPSI and the 10-m NED in rugged-terrain
watersheds. For instance, one could resample NLCD (30-m) to a 10-m raster layer, and
include the re-sampled NLCD and TI/BI created with the 10-m NED within the overall
ECM. This alternative weighted ECM would produce results that compared better to the
[PSI/10-m NED-based model (used above) because the 10-m NED would identify
topographic characteristics (e.g., concave and convex landforms) with more detail. The
scope of this research did not include an additional weighted analysis to test this scenario.

Overall, simulations using 30-m data capture the areas prioritized for remediation
by simulations using 10-m data and suggest similar BMP consideration. However, as
spatial extent is constricted to detailed areas of the watershed, such as the riparian zone,
differences in model results become more apparent and may warrant different
management strategies. For example, Figure 27a shows that model runs using both 10-m
and 30-m datasets identify a lowland area (cropland patch) as a primary area of TP
export, which could be mediated with riparian reconstruction (e.g., streamline fencing,
livestock crossings, reforestation, etc.). The type of riparian BMP would depend on the

situation and can only be confirmed by field verification. However, as the spatial scale
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between TP simulations.
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becomes finer (Figure 27b), the stream reach that requires riparian reconstruction
becomes less apparent in simulations based on 30-m data. Moreover, the 10-m data
simulations also identify different areas within the cropland patch (upland from the
stream) as potential remediation areas; whereas, 30-m data simulations do not recognize
any upland cropland areas. Hence, the watershed manager must consider the degree of
detail he/she is concerned with achieving.

Since a high level of uncertainty exists in ECModeling and model results should
only be used for prioritization, field verification is crucial (Beaulac and Reckhow 1982;

Johnes et al. 1996; Winter and Duthie 2000).

Model Limitations

General Limitations

In general, an important limitation of the ECModeling approach is the inability to
predict in real-time; variations in available nutrient transport and uptake mechanisms
over the annual cycle are not captured by the model (Johnes 1996; Winter and Duthie
2000). While the weighted ECM captures the spatial variation of nutrient export within
the watershed, it does not consider detailed biophysical mechanisms, such as organic
absorption, that alter nutrient concentrations once in the stream and affect exports from
downstream watersheds. However, the broad-scale nature of ECModeling, discussed in
Chapter II, suggests that detailed biophysical processes are less important at broad-scales
(e.g., county- or state-sized regions) and that including these variables will make
modeling efforts extremely complex (Meentemeyer 1989).

118



A further general limitation of the ECModeling approach is that literature-derived
ECVs cannot be fully verified for the entire study area without extensive experimental
fieldwork (Johnes 1996; Winter and Duthie 2000). The ECM extrapolates plot-sized
empirical data to remote areas of the basin. As variation in the hydrologic, topographic,
edaphic, and biological conditions between these areas increases, uncertainty also
increases. Although model calibration attempts to minimize uncertainty surrounding
literature-derived ECVs, full verification is still lacking. For example, the BCLRW-ECM
was calibrated successfully using median ECVs derived from the distribution of literature
reported ECVs (Table 5; Table A.4). This, however, does not suggest that each ECV
associated with a given land cover type is an accurate nutrient export estimation for that
land cover. Calibration was based on the ECM’s performance for simulating tozal basin
load and does not consider the proportional share of export from a specific land area
within a total load estimate. Consider a scenario of implementing an ECM in which the
ECVs underestimate TP in simulating forest loads and overestimate TP in simulating
pasture loads. This scenario would allow individual exports from two land covers to
offset one another and still portray the simulated total load to within +0.5% of observed
loads. In other words, while the cumulative-basin load may be accurate (£0.5%), the
exact export from each land cover type remains uncertain.

The multiple regression approach (McFarland and Huack 2001) attempts to
further minimize uncertainty and can verify ECVs derived from the literature by
associating in-stream water quality measurements taken across the basin with
surrounding land cover, building ECVs that are more indicative of the local region. In

this research, the BCLRW multiple regression analysis was unsuccessful due to reasons
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discussed in Chapter IV, and could not be used to verify the set of median ECVs that I

selected for weighted and unweighted ECM analysis.

BCLRW-ECMs Limitations

The BCLRW-ECMs include several specific limitations. An important one is that
calibration used water quality data for Ellejoy and Nails creeks that were only available
for a six-month sampling period (June to November 2003) and did not include storm
events. A more extensive water quality survey (e.g., 2-4 year period) that included storm
events would better represent annual nutrient concentrations. Moreover, sampling was
completed for a TMDL report, which will be submitted by TDEC; therefore, site
selection and sampling schedule were decided by TDEC; a more spatially extensive water
quality survey would better represent nutrient export across the study area. Because
BCLRW crosses hydrologic boundaries, the calibration could not be implemented for the
entire area, but could be implemented for the Little River watershed, which covers
roughly 50% of BCLRW. Previous sampling conducted by TDEC (1998) did include
locations along the Little River, but a single sample was not taken at the mouth of the
watershed where a cumulative-basin load could have been captured. Furthermore, TDEC
data collection was not complete (e.g., missing flow data) and did not include continuous
month-to-month sampling; several winter and fall months were not represented in the
samples.

Another calibration limitation was the lack of intemal BCLRW data that could be
used to verify calibration results. I selected ECVs from empirical studies that had climate
regimes and soil characteristics similar to those of BCLRW and aggregated their
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distributions into quartiles. However, each model run during the calibration analysis used
an entire set of quartile ECVs (shown in Table 5) and did not randomize the ECVs within
each set, mixing a 25% ECV of forest with a 75% ECV of pasture, for example. The lack
of internal BCLRW data prevented me from conducting a randomized sensitivity analysis
because there would have been no way to verify sensitivity results. For example, a
randomized calibration analysis could potentially suggest a maximum quartile ECV for
pasture and a 25% ECV for cropland. I would have no way to verify these results
without specific fertilizer application (type and amount), livestock waste removal, or
septic loading data.

Although no detailed internal BCLRW data are available, I was able to gather
general information concerning BCLRW agriculture practices and land use. Overall,
crop production and livestock operations are thought to be the primary contributors to
excessive nutrient loading in BCLRW, with cropland export the higher of the two (Eric
Henry, personal communication).

Croplands, which include corn, moderate amounts of soybeans, and limited
amounts of tobacco, rely the most on nitrogen and phosphorus based fertilizer
applications (Eric Henry, personal communication). Most cropland operations till during
winter months, a practice that increases nutrient loading because of the lack of plants to
prevent erosion and nutrient export (Beaulac and Reckhow 1982). On the other hand,
pasture land in BCLRW is devoted to primarily cattle and dairy livestock operations that
use continuous grazing practices. While rotational grazing is preferred for reducing
nutrient exports (Beaulac and Reckhow 1982), the small patch farming distribution
within BCLRW prevents this practice. Onsite waste storage facilities exist on some dairy
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farms; however, most livestock operations do not incorporate on-site waste disposal.
Although BCLRW livestock operations are environmentally undesirable and are thought
to be a major determinate of stream quality, Blount County Soil Conservation District
officials still associate higher nutrient loads with cropland (Eric Henry, personal
communication). Such expert opinions confirm that cropland should be assigned higher
ECVs than pasture, as is apparent in the set of median ECVs (Table 5); however,
determining the sensitivity of ECVs would require detailed data that could only be
acquired through extensive field experiments and questionnaires.

In addition to these limitations, the ECMs used in this research incorporate land
cover, elevation, and buffer capacity variables, but do not include additional hydrologic
variables that provide a more realistic representation of absolute loading in support of
nutrient prioritization. Equations 1 and 5 could be calibrated with additional variables,
including atmospheric deposition rates, soil type, septic loads, precipitation lost to runoff,
livestock waster storage, and fertilizer applications. Examples of ECMs containing such
additional variables can be found in Johnes (1996), Winter and Duthie (2000), and
Endreny and Wood (2003). Once again, the lack of intemal BCLRW data (e.g., fertilizer
application, septic loads, and detailed soil characteristics) prevented me from including
additional variables into these modeling efforts. For example, extensive soil data would
have allowed me to verify runoff potential calculated by the TI. Moreover, Reckhow et
al. (1980) offer septic-related nutrient ECVs for rural households (e.g., kg/capita).
However, advancements in sewage disposal technology (e.g., septic systems) since 1980

create high levels of uncertainty in model results; thus, I did not include rural household
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nutrient loads into the ECMs. Including these data would require an extensive survey of

rural populations within BCLRW.

Application of BCLRW-ECMSs to Other Regions

The ECMs presented in this research were developed and calibrated for areas
similar to eastern Tennessee. While ECModeling relies on simplicity so that it can be
distributed as a generic model, researchers should use caution when applying the models
to other regions. Selection of literature-reported ECVs is critical for determining local
nutrient export and should be accomplished with a calibration procedure (Beven 1993).

Calibration can be done with observed in-stream nutrient concentrations or
extensive field experiments; if these data are not available, a simple examination of local
climate, soil, and land use management will provide some model calibration. Caution
should also be used when modeling different nutrients. By selecting TP and TN, the
researcher must consider more variables—more nutrient source types, more
transformation processes, more pathways, and more sinks—that affect the fate and
transport of two nutrients rather than only one. The highly variable fate and transport of
TN makes it difficult to comprehensively model absolute exports levels (Endreny and
Wood 2003). In this research, however, I use TP and TN simulation results for nutrient
prioritization at different mapping scales and between different geospatial-data scales;
absolute nutrient export amounts were not reported.

The unweighted ECM is the more versatile of the two models, incorporating only
land cover type, area measurements, and ECVs in the computation; thus, it can be applied
in more regions compared to the weighted ECM. USEPA (2001b) distributes PLOAD,
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which is a version of the unweighted ECM bundled within the multi-facetted BASINS
architecture. PLOAD exploits the visualization power explicit to GIS applications for
providing a graphical front-end to spreadsheet ECModeling. One limitation of PLOAD
is its inability to model in raster, which is essential for certain broad-scale land cover data
(e.g., NLCD). Vectorizing raster-based land cover data creates undesirably large datasets
that will limit PLOAD’s broad-scale modeling ability due to considerable amounts of
computational payload. However, PLOAD has predefined parameters and is easy to
implement, whereas raster-based GIS does not have predefined parameters for
ECModeling and is less intuitive and more time-consuming to implement. Hence, the
researcher must consider the size of his/her study area, and the time available for
modeling in selecting raster- or vector-based ECModeling.

It should be noted that while USEPA (2001b) advertises PLOAD’s ability to
model several different water quality constituents—for example, Dissolved Oxygen
(DO), Total Organic Content (TOC), Biochemical Oxygen Demand (BOD), Fecal
Coliform, and E. Coli—most empirical studies have only included TP and TN in
modeling efforts (Reckhow ef al. 1980; Frink 1991; Soranno et al. 1996; Johnes 1996;
Mattikalli and Richards 1996; Winter and Duthie 2000; Wickham and Wade 2002;
Endreny and Wood 2003). I have not found existing literature that discourages modeling
additional water quality constituents with ECMs; however, calibration will be difficult
because the limited sources in the literature for other pollutant ECVs.

Compared to the unweighted ECM, the weighted ECM is limited in its
applicability in other regions. Weighted ECMs use a topographic index (TI) (Beven and

Kirkby 1979) to model the runoff-producing potential of specific watershed areas, which
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is not applicable for all climatic regimes. The TI is based on the theory that as watershed
areas become saturated, their soil’s water storage capacity decreases, which will
ultimately result in overland flow (or runoff). Studies conducted by Torch et al. (1993)
support this theory for humid areas in the eastern United States, where water table levels
follow the topography of the landscape; however, in contrasting climate regimes this
theory is not valid. Moreover, the weighted ECM does not support vector data formats
and can only be accomplished through raster-based GIS modeling. Hydrologic

algorithms performed on a DEM are simply not possible for a vector elevation model.

Future Research

The purpose of this research was to determine whether broad-scale data (e.g., 30-
m resolution) produce reliable water quality modeling results compared to fine-scale data
(e.g., 10-m resolution) for making remediation decisions. Researchers and watershed
managers can use this information in determining geographic scales a priori in future
modeling projects. Knowledge that, for example, export coefficient modeling of 5™ order
watersheds for nutrient export based on NLCD produces statistically similar results to
modeling based on more detailed, fine-scale data will assist watershed managers in
selecting the appropriate data for their modeling needs. It should be noted that my
findings in this research are empirical and not based on existing theory. Hence, my
findings may not be supported in other regions of the United States or beyond. For
example, in different regions, the average size of a 5™ or 6™ order stream contributing
areas may be different from those computed in BCLRW. Different size stream
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contributing areas could be caused by different topographic characteristics (compared to
BCLRW) or the resolution of the input DEM (i.e., 10 m vs. 30 m), which presumably
will affect final results when comparing broad- and fine-scale data within an unweighted
or weighted ECM.

Findings presented in this thesis are only one step in examining geographic scale
in hydrologic modeling with broad- versus fine-scale data at the county-mapping scale.
Future research could expand the unweighted ECM analysis study area to, for example,
8-digit HUCs across the southeastern United States. A larger study area would allow one
to examine differences in broad- and global-scale datasets (e.g., NLCD and LULC-
AVHRR) and determine whether or not similar patterns (to this research) of statistical
difference and change in watershed prioritization between watersheds are observed. I
chose the BCLRW study area based on the availability of IPSI data. NLCD and LULC-
AVHRR are freely available for the entire United States. However, this future research
scenario should include newer releases of NLCD, which will be available for the eastern
United States in late 2004 (USEPA 2003b). Temporal differences in IPSI (ca 2000) and
NLCD (ca 1992) were apparent during simulations within BCLRW watersheds
containing mixed land cover types; BCLRW experienced a 23% growth in population
between 1990 and 2000 (US Census 2000) and decreases in agricultural land (USDA
1997), creating urban infringement on forest and agriculture. I expect that, within
BCLRW, differences in model results between fine-scale data (e.g., ISPI) and NLCD will
decrease from those presented in this research as more up-to-date NLCD are used.

The development of ECVs using the multiple regression technique suggested by
McFarland and Huack (2001) was unsuccessful in BCLRW primarily because of the
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limited availability of water quality data. Future research with an extensive water quality
survey (2 to 4 years) could better determine if this technique is applicable in regions
similar to BCLRW and aim to improve this technique so that other research and
watershed managers can benefit. An extensive water quality survey should include
continuous sampling that captures a spatial representation of the entire basin.

Calculations of flow paths, upslope-contributing areas, and downslope dispersal
areas rely on only one method for determining pixel accumulation—the D-8 method or
steepest decent. Building upon and improving the TI and BI within the weighed ECM
will help researchers understand differences in weighted ECM simulation in areas
characterized by both gently rolling and rugged terrain. Research conducted by Quinn ez
al. (1991), Costa-Cabral and Burges (1994), and Tarboton et al. (1997) provide
alternative flow path extraction methods.

Moreover, the weighted ECM analysis suggests that non-riparian zones were
primary nutrient sources in BCLRW. The lack of internal BCLRW data and scope of this
thesis prevented me from conducting field surveys to verify these findings. Endreny and
Wood (2003) also were unable to validate weighted ECM results to detailed field
surveys. Conducting extensive field surveys would provide future model applications a
higher level of confidence for accurately locating BMP potential areas.

Finally, findings from this research do not suggest that fine-scale land cover data
are unnecessary for modeling the hydrologic processes and water quality of a particular
watershed, only that fine-scale data are unnecessary for prioritizing risk areas in a county-
sized area similar to that of BCLRW. For example, on a client-by-client basis, TVA uses
IPSI within propriety spreadsheet models to simulate several different water quality
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constituents (e.g., nutrients, bacteria, zinc, and sediment loss). IPSI’s ability to model
detailed hydrologic processes is essential for isolating specific land cover types and
reporting accurate NPS pollutant concentrations. Conversely, this research is suggesting
that in regions that have the same hydrologic characteristics as BCLRW, and where IPSI
or other fine-scale data are not available, local watershed managers can confidently use
broad-scale data (e.g., NLCD and 30-m NED) to prioritize nutrient-risk areas. Simple
and quick modeling allows managers to determine some level of risk for their study while

retaining a good portion of their budget for other detailed modeling or monitoring needs.
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Table A.4: Literature survey of TP and TN export coefficient values.

Land Cover TP (kg/ha/yr) TN(kg/ha/yr) Source

Forest

Forest' 0.01 0.10 Haith and Shoemaker (1987)

Deciduous Hardwood? 0.35 2.82 Taylor et al. (1971)

Mixed Pine and Hardwood? 0.43 0.28 Krebs and Golley (1977)

Mixed Pine and Hardwood? 1.50 0.20 Krebs and Golley (1977)

Oak-Hickory forest? 2.00 0.03 Henderson et al. (1977)

Woodland® 0.15 3.12 Northeast Florida Water Mngt Dis. (1994)
Urban

Urban' 1.00 5.00 Rast and Lee (1983)

Industrial® 4.17 14.95 Betson (1978)

Industrial® 535 11.13 Northeast Florida Water Mngt Dis. (1994)
Commercial? 485 12.78 Betson (1978)

Commercial® 230 10.63 Northeast Florida Water Mngt Dis. (1994)
Low Density Urban" 4 2.20 28.00 Haith and Shoemaker (1987)
Suburban/Residential® 0.43 1.56 Betson (1978)

Multi-family Residential® 221 7.92 Northeast Florida Water Mngt Dis. (1994)
Pasture

Moderate dairy grazing’ 0.14 3.46 Kilmer et al. (1974)

Heavy Dairy grazing? 0.16 10.99 Kilmer et al. (1974)

Pasture for brood cattle? 135 9.23 Krebs and Golley (1977)

Continuous grazing’ 3.80 13.00 Krebs and Golley (1977)

Pasture® 0.56 6.28 Northeast Florida Water Mngt Dis. (1994)
Cropland

Com/Soybeans; no till? 3.70 19.30 McDowell et al. (1978)

Com? 221 12.42 Smith et al. (1978)

Com’ 0.40 329 Bradford (1974)

Soybeans; conventional tillage? 17.64 46.50 McDowell et al. (1978)

Soybeans; no tillage? 2.60 5.10 McDowell ef al. (1978)

Soybeans; no tillage? 7.20 23.00 McDowell et al. (1978)

Soybeans; no tillage? 3.70 19.30 McDowell et al. (1978)

Tobacco and Com? 1.40 3.70 Krebs and Golley (1977)

Millet? 0.44 3.04 Bradford (1974)

Agricultural Crops® 1.05 17.54 Northeast Florida Water Mngt Dis. (1994)
Barren Land

Inactive Ag. Land' 0.52 2.00 Haith and Shoemaker (1987)

Idle Land* 0.05 0.50 Loehr et al. (1989)

Idle Land* 0.25 6.00 Loehr et al. (1989)

! Compiled by Frink (1991).

2Compiled by Reckhow et al. (1980).

* Compiled by EPA (2001b).

* Complied by McFarland and Hauck (2001).
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Table A.5: Calibration loading values. Nutrient loadings produced from
ECM simulations at each ECV quartile.

150

Unweighted ECM Weighted ECM

ECV Quartile TP TN® TP TN’
Minimum 1,750.5 23,424.3 1,695.3 20,365.2
Lower 5,817.8 48,828.7 5,541.7 45,693.3
Median 10,600.4 82,458.6 10,146.0 73,228.1
Upper 24,391.1 107,470.6 23,641.6 101,880.1
Maximum 52,988.2 164,585.1 52,125.6 155,268.3
Observed Loadings 10,704.1 87,235.6 10,704.1 87,235.6

Nutrient loadings are represented as kg/year.
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