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ABSTRACT 

Land cover data are frequently used as a basis for estimating total phosphorus 

(TP) and total nitrogen (TN) delivered to surface waters. Nutrients, such as TP and TN, 

are a leading cause of water quality impairment in the United States. Section 305(b) of 

the Clean Water Act requires each state to report all impaired surface waters every two 

years. Ideally, this is accomplished with in-stream measurements; however, the cost and 

time requirements of such a daunting task are too great for most states to incur. 

Alternatively, the export coefficient model (ECM) uses commonly available land cover 

and elevation data to screen watershed areas for high levels of nutrient export quickly and 

inexpensively. Incorporating the ECM into a GIS architecture allows a watershed 

manager to visualize nutrient export over large areas and prioritize those areas 

accordingly. Once specific nutrient-yielding areas have been identified and prioritized, 

the watershed manager can implement more detailed monitoring and analysis programs. 

New developments in GIS have produced a wide range of commonly available 

broad-scale geospatial data. For example, the United States Geological Survey (USGS) 

freely distributes National Land Cover Data (NLCD), which identify 21 classes of land 

cover for the conterminous United States at 30-m resolution. Conversely, fine-scale, 

fine-resolution geospatial data, such as locally mapped, 10-m resolution land cover data, 

are not widely available, costly, and usually developed for small areas on a client-by­

client basis. In regions where fine-scale, fine-resolution data are not available, watershed 

managers need information on the performance of water quality models using fine-scale, 

fine-resolution versus broad-scale, coarse-resolution data ( e.g., 30-m NLCD). 
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The purpose of this thesis is to determine if broad-scale land cover data (e.g., 30-

m NLCD), incorporated within a broad-scale hydrologic model, are appropriate for 

effectively screening county- or smaller-sized areas for excessive nutrient exports, 

prioritizing those areas, and making management decisions based on the prioritization. I 

answer five questions for addressing this issue: 

1. Can broad-scale, coarse-resolution land cover data capture enough
detail to produce usable model results for stream remediation decisions?

2. At what spatial scale do model results produced from fine- and broad­
scale land cover datasets become statistically different?

3. At what spatial scale does the prioritization of sub-watersheds for
nutrient flux change between simulations that use different land cover
data?

4. Within sub-watersheds, is excessive nutrient export more likely to
originate in the riparian zone or farther from the stream?

5. Does the prioritization of areas within watersheds for nutrient flux
reduction change between simulations using fine- and broad-scale data,
such that model results suggest different management scenarios?

Using an ECM, I simulated nutrient loading for Blount County and the Little 

River watershed (BCLRW), Tennessee. I compare model results produced from an 

ensemble of model runs that incorporated various land cover datasets ( of 10-m, 30-m, 

and 1-km resolution) at multiple spatial mapping extents, which were represented by 4t\ 

5th, and 6th order stream contributing areas. Within Arc/Info© GRID©, I constructed an 

unweighted ECM that simulates cumulative nutrient exports by watershed, and a 

weighted ECM that considers topographic orientation and nutrient trapping ability for 

simulating nutrient export within the watershed, allowing the researcher to examine 

nutrient export on a pixel-by-pixel basis. 
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Overall, results support the hypothesis that broad-scale land cover data ( e.g., 30-m 

NLCD) are appropriate for prioritizing sub-watershed for nutrient flux remediation at the 

county-mapping scale in study areas similar to BCLRW. Results from unweighted ECM 

simulations suggest that cumulative nutrient fluxes of 4th order watershed differ 

significantly between models based on 30-m and 10-m resolution land cover data. 

However, as the area of analysis increases from watersheds of 4th order streams to those 

of 5 th and 6th order streams, predictions based on 10-m and 30-m input data are not 

significantly different. 

Weighted ECM simulations using both broad-scale (30-m) and fine-scale (10-m) 

data suggest that nutrient fluxes originate in non-riparian areas of the Blount 

County/Little River watershed study area. Simulations based on coarser-resolution (30-

m) land cover data produced similar patters of nutrient export within watersheds as

simulations based on higher resolution (10-m) data, but the former accounted for 9% (TP) 

to 19% (TN) of the high nutrient export identified by the latter. 

Findings from this research do not suggest that detailed data are unnecessary for 

modeling the hydrologic processes and water quality of a particular watershed, only that 

these data are unnecessary for screening and prioritizing risk areas in a county-sized area. 

This project was confined to BCLRW, therefore, the findings are empirical rather than 

theoretical. This research is a first step in exploring the effects that geographic scale and 

geospatial data resolution have on county-wide hydrologic modeling. Future research 

should expand this study and determine whether nutrient modeling trends observed in this 

research are similar to those in other places. 
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CHAPTER! 

INTRODUCTION 

Land cover data are frequently used in estimating nutrient constituents of total 

phosphorus (TP) and total nitrogen (TN) delivered to surface waters (Wickham and Wade 

2002). Empirical studies have shown a strong relationship between land cover 

composition and TP and TN exports from watersheds (Haith 1976; Omernik 1976; Hill 

1978; Konrad et a/.1985; Gale et al. 1993; Heng and Nikolaidis 1998; Nerbonne and 

Vondracek 2001; Wang et al. 2002). Enhancements in computer technology and 

geographic information science (GIS) enable researchers to broaden the spatial scale of 

hydrologic modeling applications. Incorporating land cover information into GIS-based 

modeling applications allows the watershed manager to conceptualize and visualize 

current and future trends of surface water impairment by nutrients (Burian et al. 2002). 

Surface water pollution sources can be categorized as point source or non-point 

source (NPS). In past years, regulations affecting stream water quality in the United 

States have been focused on discharges from factories, waste facilities, sewage facilities, 

and other point sources (Carrubba 2000). By the 1970s, governmental regulations such 

as the Clean Water Act ( 1972) compelled industries to address and reduce point source 

discharges ( e.g., the National Pollution Discharge Elimination System) (USEPA 2003a). 

Although this helped to reduce pollution, surface water quality degradation is now being 

attributed to NPS water pollution (Sliva and Williams 2000). 

NPS pollutants usually originate from upland watershed lands and are transported 

via overland flow pathways to standing and running surface waters. NPS pollutants may 
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originate in large contributing areas with complex topography and land cover, thus 

making their sources hard to identify (Likens and Bormann 197 4; Henderson and Harris 

1975; Dillon and Kirchner 1975; Haith 1976; Omernik 1976; Hill 1978; Konrad et

a/.1985; Gale et al. 1993; Heng and Nikolaidis 1998; Carrubba 2000; Sliva and Williams 

2000; Nerbonne and Vondracek 2001; Wang et al. 2002). Sediment and nitrogen can 

contaminate public drinking water supplies and affect aquatic species diversity and 

abundance (Likens and Bormann 1974; Henderson and Harris 1975). Extensive 

phosphorus loading accelerates surface water eutrophication (Reckhow et al. 1980; 

Winter and Duthie 2000; Fisher et al. 2000). While other NPS pollutant constituents can 

also be problematic for environmental systems and human use, this research incorporates 

only TP and TN into the modeling process. 

Section 305(b) of the Clean Water Act of 1972 requires each state to identify 

impaired waters and assess point sources and NPSs of pollution every two years (USEP A 

2002). During the 1990s, the United States Environmental Protection Agency's 

(USEPA) Watershed Initiative broadened the spatial scale ofNPS remediation by 

requiring NPS assessment across entire watersheds rather than in localized areas. Ideally, 

this is to be done through direct in-stream monitoring programs; however, the time and 

money required for monitoring make comprehensive sampling prohibitively expensive 

for most states (McFarland and Hauck 2001; Burt and Johnes 2002). 

Alternatively, the export coefficient model (ECM) allows researchers to target 

areas for stream remediation quickly and inexpensively. ECModeling assumes that, for 

similar climatic regimes, land cover will export a known amount of nutrients. Using 

readily available land cover data and export coefficient values (ECVs), which are annual 

2 
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estimates of pollutant loading per land cover areal unit, it is possible to estimate a 

watershed's annual nutrient export (Winter and Duthie 2000). When built within a GIS 

framework, the ECM allows a researcher to evaluate broad-scale areas for management a

priori, visualizing nutrient-risk areas and prioritizing them accordingly (Johnes 1996; 

Mattikalli and Richards 1996; Johnes and Heathwaite 1997; Endreny and Wood 2003). 

Unlike complex, hourly-time-step, hydrologic models with large data 

requirements, which are cumbersome and complicated to implement at broad scales 

(Johnes 1996; Soranno et al. 1996; Endreny and Wood 2003), the ECM uses general 

rules of watershed response from commonly available data, such as land cover, ECV s, 

and elevation, to estimate real world watershed processes at broad scales (Endreny and 

Wood 2003). Land cover data and elevation data are available from the United States 

Geological Survey (USGS), which freely distributes 30-m resolution National Land 

Cover Data (NLCD) (ca. 1992), global 1-km Land Cover/Land Use Data (ca. 1992), and 

digital elevation models (DEM) ( of 1-km, 30-m, and 10-m resolution) for the 

conterminous United States, over the World Wide Web. ECV s are available in the 

hydrologic literature, where numerous empirical studies report observed nutrient export 

values and calculated ECV s that can be extrapolated to broader watershed scales 

(Reckhow et al. 1980; Beaulac and Reckhow 1982; Frink 1991; Wickham and Wade 

2001). 

One significant advantage of ECModeling is the ability to analyze large areas. 

Watershed managers and county planners often need broad-scale information to quickly 

evaluate and prioritize nutrient-exporting areas. The use of commonly available data is 

an economically feasible alternative to fine-scale assessments of in-stream water quality 
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and land cover patterns (Johnes 1996; Johnes and Heathwaite 1997; Endreny and Wood 

2003). While broad-scale data (e.g., 30 m resolution extending across the conterminous 

U.S.) may introduce uncertainty to particular locations within the watershed

(Meentemeyer 1989), the level of uncertainty can be appropriate for broad-scale studies, 

such as those covering entire counties or watersheds. Once the ECM has identified 

critical contributing areas, more expensive, detailed in-stream water quality 

measurements and modeling may be implemented in targeted areas. 

BASINS (Better Assessment Science Integrating Point and Nonpoint Sources) 

(USEPA 2001a}-a collection ofhydrologic models, GIS toolsets, and geospatial 

datasets that operate within the ArcView 3.x computing architecture-includes PLOAD, 

a lumped annual pollutant load model that emulates ECModeling. Like most ECMs, 

PLOAD does not model hourly time-step activities, nor does it require extensive 

meteorological data or atmosphere-vegetation-soil equations; rather, PLOAD uses simple 

ECM ideology and commonly available data to prioritize sub-watersheds (USEP, 

2001b; Endreny and Wood 2003; Endreny et al. 2003). 

Although accurate ECV s are critical components to ECModeling, the outcome of 

modeling depends on land cover scale and resolution. Therefore, different model results 

may be obtained from broad-scale, coarse resolution ( e.g., 30-m) versus fine-scale, fine­

resolution ( e.g., 10-m) land cover data due to differences in areal measurements of each 

land cover type. 

Several researchers have extended the traditional methods of ECModeling by 

including other variables such as terrain shape, runoff pathway characteristics, and buffer 

likelihood into the modeling procedure. Few studies, however, have focused on 

4 
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questions that arise when considering land cover scale and resolution in different 

modeling environments. Burian et al. (2002) compared several land cover datasets for 

application in urban environmental modeling. Their study found that in areas 24 km.2 in 

size, simulated nutrient and sediment loadings, based on broad-scale land cover ( e.g., 

1 :250,000 and/or 30-m resolution), were 8% to 40% higher compared to results based on 

locally or regionally mapped land cover ( e.g., < 10 m resolution). They suggest that in 

small, urban areas significant differences in runoff volume and pollutant load can be 

expected between models based on broad-scale, coarse-resolution and fine-scale, fine­

resolution land cover. 

Konarska et al. (2002) compared model results from 1-km and 30-m land cover in 

an assessment of the total value of ecological service for the conterminous United States. 

They used land cover to represent ecological value, which they described as the goods 

produced ( e.g., timber, pharmaceuticals, and seafood) or the services provided by an 

ecosystem ( e.g., air and water purification, stabilization of climate, and generation and 

renewal of soil and soil fertility). Konarska et al. (2002) found total ecological value, 

according to 30-m land cover, to be 200% higher than the value derived from 1-km land 

cover data. They note these differences are due to finer-resolution data (30 m) capturing 

more ecologically valued land cover types such as wetland areas. 

Endreny et al. (2003) used three land cover datasets-Geographic Information 

Retrieval Analysis System (GIRAS), NLCD, and data derived from aerial color near­

infrared digital orthophoto quarter quadrangles (DOQQ)-as inputs to test flow 

hydrograph sensitivity levels in the Croton watershed of southeastern New York 

produced from WinHPSF, a real-time hydrologic model bundled within BASINS. Their 

5 
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study determined the degree to which different land cover datasets, which contain 

different measures of impervious surfaces and bare soil, control simulated flow level. In 

other words, are there differences in a specific flow peak(s), or does the general shape of 

the model-derived hydrograph change when swapping land cover data? Their results 

indicate that model sensitivity to different land cover datasets is significant for estimating 

specific peak flow discharges, but land cover data swapping does not significantly change 

the general shape of the flow hydro graph, which can be considered a broader-scale 

watershed characteristic. 

These studies show significant differences between results produced from 

environmental modeling with broad- versus fine-scale land cover. While absolute 

pollutant loads or runoff volume estimates, for example, may differ significantly between 

land cover datasets, no existing research addresses the question: Are broad-scale land 

cover data ( e.g., 30-m NLCD), incorporated within a broad-scale hydro logic model ( e.g., 

ECM), appropriate for effectively screening county- or smaller-sized areas for excessive 

nutrient exports, prioritizing those areas, and making management decisions based on the 

prioritization? 

Developing fine-scale, fine-resolution land cover data is costly in both time and 

money. As various broad-scale land cover data become more widely available and 

modeling is implemented in larger areas, the watershed manager is faced with important 

questions: Which land cover dataset to use? What spatial scale ( e.g., watershed size) is 

appropriate for conducting ECModeling with 30-m data? Ultimately, the goal of my 

research is to provide insight into these issues and guide local watershed managers in 

future stream remediation projects. In this thesis, I implement an ECM that uses three 

6 
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different land cover datasets (10-m, 30-m, and 1-km resolution) at three levels of spatial 

scale, which are represented by sub-watershed size, to address the following questions: 

1. Can broad-scale, coarse-resolution land cover data capture enough

detail to produce usable model results for stream remediation decisions?

2. At what spatial scale do model results produced from fine- and broad­
scale land cover datasets become statistically different?

3. At what spatial scale does the prioritization of sub-watersheds for
nutrient flux change between simulations that use different land cover
data?

4. Within sub-watersheds, is excessive nutrient export more likely to
originate in the riparian zone or farther from the stream?

5. Does the prioritization of areas within watersheds for nutrient flux
reduction change between simulations using fine- and broad-scale data,
such that model results suggest different management scenarios?

The study area for this project is Blount County and the Little River Watershed, 

Tennessee. In answering the above questions, I compare ECModeling results from three 

land cover datasets: (a) fine-scale (10-m) land cover data that are part of the Integrated 

Pollution Source Identification (IPSI) geographic database developed by the Tennessee 

Valley Authority (TV A); (b) broad-scale (30-m) National Land Cover Data (NLCD) 

developed by the Multi-Resolution Land Characterization (MRLC) consortium, a group 

of federally funded agencies; and ( c) global-scale (1-km) Advanced Very High 

Resolution Radiometer Land Use/Land Cover (LULC-A VHRR), developed by the 

National Aeronautics and Space Administration (NASA). 

In this research, I first use a multiple regression approach to develop TP and TN 

ECV s from in-stream measurements taken in the Little River watershed between January 

1998 and November 2003. Next, I develop two ECMs within the Arc/Info© GRID© 
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module (ESRI 2001): (1) an unweighted ECM that uses traditional methods suggested by 

Reckhow et al. (1980), and (2) a weighted ECM that builds upon the work ofBeven and 

Kirkby (1979), Beven (1995), and Endreny and Wood (2003). I calibrated both models 

with in-stream TP and TN concentrations collected from June to November 2003 in 

Ellejoy Creek and Nails Creek watersheds, which are Little River sub-watersheds. I ran 

the unweighted ECM at three different spatial mapping extents, which are represented by 

4t\ 5t\ and 6th order stream contributing areas. For clarity, I refer to each level of spatial 

mapping extent simply as watershed extent. I compare differences between unweighted 

ECM results based on varying levels of watershed extent using an ANOV A test and 

correlation matrix. I then use the weighted ECM, which considers topographic 

orientation and nutrient trapping ability, to illustrate nutrient flux differences within 

watersheds and between land cover simulations. 

This thesis is organized as follows: Chapter II discusses the study area of Blount 

County and the Little River Watershed, and the importance of spatial scale in hydrologic 

modeling; Chapter III discusses data acquisition and preparation; Chapter IV presents 

methods and results from ECV calculation using multiple regression and details the 

development of weighted and unweighted ECMs; Chapter V presents the results from the 

ECM calibration, the unweighted ECM analysis, and the weighted ECM analysis. 

Finally, Chapter VI discusses research implications arising from the findings of this 

study, ECM limitations, and future research. 

8 
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CHAPTER II 

STUDY AREA AND LITERATURE SURVEY 

This chapter discusses the study area used in this thesis, and surveys literature that 

addresses the relationship between land cover composition and water quality and the 

importance of spatial scale in hydrologic modeling. 

The Study Area 

The study area for this thesis is Blount County (BC), Tennessee and the Little 

River watershed (LR W), which extends into Sevier and Knox counties, Tennessee 

(Figure 1). Located in northeastern Tennessee, BCLRW covers approximately 1,744 km2

and includes portions of two 8-digit USGS Hydro logic Unit Code (HUC) watersheds: 

Watts Bar Lake (06010201) and Lower Little Tennessee River (06010204) (Figure 2). 

The study area contains primarily forest land cover in the upland regions and intensive 

agriculture and urban areas in lowland regions. 

BCLRW is located in the upper Tennessee River Valley, a northeast to southwest 

draining river basin that stretches from southwest Virginia to western Tennessee. 

Situated between the Blue Ridge Mountains and Cumberland Plateau, the study area 

includes portions of two major physiographic provinces: the Ridge and Valley in the 

west and the Blue Ridge Mountains in the east. Topography varies from gently rolling 

valleys to extremely steep slopes; elevations range from approximately 228 m in the 

valleys to 1,500 m in the mountains, creating a hydrologic environment where streams 
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Figure I : The study area. Blount County and the Little River watershed 
(BCLR W) of eastern Tennessee. 
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follow a trellis pattern and flow through narrow valley floors or cut across steep ridges 

(Smith 2000). 

The underlying geology includes Ordovician and Cambrian limestones, shales, 

dolomites, and Paleozoic sandstones (Rodgers 1953). Heavily forested mountain area 

soils are low in fertility, acidic, and light in color (Smith 2000), while valley soils­

classified as Alfisols, Inceptisols, and Ultisols-are well drained, shallow to deep, and 

loamy to clayey (Springer and Elder 1980; Eric Henry,personal communication). 

Natural vegetation, primarily forest, contains a variety of hardwood and softwood 

species; however, various anthropogenic factors, such as logging operations, have 

converted portions of the mixed hardwood forest to predominately shallow-rooted, 

agricultural vegetation such as row crops and pasture grasses (Smith 2000; DeSelm 

2001 ). Climatic conditions are characteristic of the eastern United States humid 

continental climate, with hot summers and short mild winters. Precipitation is greatest 

during the winter and spring months when annual rainfall averages roughly 112 to 140 

cm. Annual temperature ranges are 50°C to 60°C, depending on topography (DeSelm

2001). 

The Little River Watershed, which covers 28% of Watts Bar Lake Watershed and 

drains a total ofroughly 979 km2
, includes approximately 27,435 ha of Great Smoky 

Mountain National Park forest in upland areas. Preserved tributary streams converge to 

form the upland portions of the Little River, which is an ecoregion reference stream, 

classified by the USEP A as a viable natural resource that can be used to establish water 

quality standards and for public recreation. However, water quality effects of intensive 

lowland agricultural practices and increases in urban growth have caused most Little 
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River tributaries, such as Pistol Creek, Ellejoy Creek, Nails Creek, Crooked Creek, Short 

Creek, Roddy Branch, and Russell Branch, to be listed on the 305(b) report of 2000 as 

impaired waters. 

The portion ofBCLWR that is not drained by the Little River watershed covers 

21 % of the Lower Little Tennessee River Watershed and includes 24,733 ha of Great 

Smoky Mountains National Park. Lowland sections of this region also include intensive 

urban development, and agricultural practices have caused most streams, such as Baker 

Creek and Ninemile Creek, to be listed as impaired on the Tennessee 305(b) report of 

2000 {TV A 2003). 

BCLRW includes the population centers ofMaryville (-20,000) and Alcoa 

(-7,000). Total population in the study area during 2000 was roughly 105,823. Although 

most (63%) ofBCLRW's population resides in urban areas, a high proportion (37%) 

lives in rural areas (U.S. Census Bureau 2000). 

Blount County includes approximately 37,721 ha of agricultural land, which 

contain 2,380 farms that average roughly 36 ha in size. Total cropland covers roughly 

2,701 ha; however, most farming operations are devoted to livestock (60%), which 

includes beef cattle, dairy cattle, hogs, and sheep. Beef cattle operations represent the 

largest proportion oflivestock operations (96%), with a head count of 33,609 total cattle, 

while dairy cattle (2%), hog (1 %), and sheep (1 %) farms occupy smaller areas (USDA 

1997). 

As an area rich in water resources, outdoor recreation, wildlife and plant species, 

and farming, BCLRW is environmentally and economically important to the people of 

eastern Tennessee. Ongoing efforts by the Blount County government, United States 
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Department of Agricultural (USDA), Tennessee Department of Environmental 

Conservation (TDEC), Tennessee Valley Authority (TVA), the University of Tennessee 

(UT), and the Little River Water Quality Forum (LRWQF) share the goals of assessing 

and improving water quality for present and future use. 

Literature Survey 

Water quality remediation and the increasing impact of agricultural practices on 

surface waters makes BCLRW an ideal area for conducting water quality modeling 

analysis with geographic information science (GIS) and export coefficients. This section 

discusses the relationship between water quality and intense agricultural practices and 

reviews different theories behind broad-scale water quality modeling with export 

coefficients and GIS. 

Land Use and Water Quality Problems 

Empirical studies suggest a strong relationship between NPS pollution loading of 

surface waters and the intensity of human land use activity in upland and lowland areas 

(Likens and Bormann 1974; Henderson and Harris 1975; Dillon and Kirchner 1975; 

Haith 1976; Omernik 1976; Hill 1978; Konrad et al.1985; Gale et al. 1993; Heng and 

Nikolaidis 1998; Carrubba 2000; Nerbonne and Vondracek 2001; Wang et al. 2002). 

In BCLR W, agricultural practices have been targeted as a primary land use 

contributing to water quality degradation (TVA 2003). Pollutants such as sediment, 

nitrogen, and phosphorus are transported through the area via runoff pathways to 
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standing and flowing surface waters. Forest cover extent and density are major factors 

regulating runoff rates in this region (TVA 2003; Eric Henry,personal communication). 

Dense forest cover provides deep-rooted vegetation that stabilizes soil, regulates 

infiltration rates, takes up moisture for photosynthesis, and filters subsurface and surface 

flow (Hill 1978; Mander et al. 1998). In BCLRW, most forested areas have been 

converted to shallow-rooted row crop and pasture lands, causing lower 

evapotranspiration levels, higher infiltration rates, higher runoff rates, less soil stability, 

less vegetative filtration and, ultimately, higher export of pollutants to surface waters. 

In 1992, the USEP A targeted agricultural practices as the number one source of 

surface water pollution in the United States (Wang et al. 2002). Agriculture practices in 

upland areas can lead to the excess delivery of animal wastes, inorganic nutrients, 

pesticides, herbicides, and sediment to streams (Heng and Nikolaidis 1998; Nerbonne and 

Vondracek 2001; Wang et al. 2002). The reduction of riparian vegetation due to 

livestock grazing causes extensive stream bank instability, resulting in additional soil 

losses and destabilization of stream channels (Konrad et al.1985; Gale et al. 1993; Sliva 

and Williams 2001; Wang et al. 2002). 

Sediment loading, the most common NPS pollutant in the United States, impairs 

approximately 50% of the nation's streams (Nerbonne and Vondracek 2001). Excessive 

delivery of sediment to surface waters via overland flow has detrimental effects on water 

quality, drinking water supplies, and stream habitat for fish and invertebrate species 

(Jones et al. 2001; Sliva and Williams 2001). Watersheds with high proportions of 

impervious surfaces from roads and urban areas greatly increase the frequency and 

magnitude of rainfall runoff and thus the risk of erosion and sediment loading into 
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surface waters (Harden 1992; Arnold and Gibbons 1996). Furthermore, agriculture on 

slopes greater than 3 % can also cause erosion and excessive sediment loading 

(Wischmeier and Smith 1978; Jones et al. 2001), and will result in lower crop yields and 

lower pasture productivity due to infertile soils (Hill 1978). In this research, I was unable 

to locate sufficient sediment water quality data for sediment modeling. Therefore, the 

NPS modeling in this research assesses only nutrient export. 

Nutri(?nt loadings, such as nitrate-nitrogen (N03 � and phosphorous, are growing 

concerns for watershed managers (Hill 1978; Reckhow et al. 1980). Excessive nutrient 

loading to surface water disrupts aquatic species interactions, disturbs the hydrologic 

cycle, and causes eutrophication. Moreover, nutrient loading can affect public drinking 

supplies, causing contamination and promoting hazardous public health conditions. Past 

researchers have shown a significant positive correlation between nitrogen concentration 

in surface waters and the area of agricultural land contributing flow to those waters 

(Likens and Bormann 1974; Haith 1976; Omernik 1976). In the United States, increasing 

fertilizer and manure applications have been targeted as primary causes of high nitrogen 

levels in surface waters (Hill 1978). Agricultural practices have also been linked to 

excessive total phosphorus exports to surface waters (Dillon and Kirchner 1975; Omernik 

1976). Additionally, numerous empirical studies have found strong relationships 

between surface water phosphorus levels, human population, and urban development 

(Muir et al. 1973; Gburek and Folmar 1999). 

Past research cites climate and soil type as major factors controlling nutrient 

fluxes to surface waters. Climate influences the distribution and decomposition of 

vegetation, the development of soil, and the distribution of fauna and microflora. Areas 
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within warm or temperate climates and zones of high rainfall have been associated with 

high levels of nutrient flux (Beaulac and Reckhow 1982). Likewise, soils with high 

infiltration rates, low cation content, and low erodibility ( e.g., sandy/gravel soils) are 

ideal for reducing the nutrient flux via overland flow. Conversely, soils with high cation 

content, high erodibility, and low infiltration capacity ( e.g., clay or silt loams) can 

promote high rates of nutrient export via overland flow (Beaulac and Reckhow 1982). 

Henderson and Harris ( 197 5) found that undisturbed, forested watersheds do not 

export high levels of nitrogen and are effective in minimizing nitrogen losses due to the 

natural recycling mechanisms of vegetative cover. Dense forest cover intercepts a 

significant amount of rainfall and decreases nutrient fluxes to surface waters (Dunne and 

Leopold 1978; Hill 1978). Coniferous forests have been observed to be more effective 

filters for nutrient fluxes compared to deciduous cover (Beaulac and Reckhow 1982). 

Gburek and Folmar (1999) found that first-order streams in upland agricultural areas have 

significantly higher concentrations of total nitrogen than those located in most forested 

areas. In addition, wetlands have been found to significantly decrease, through filtration 

and trapping, nitrogen and phosphorus delivered by surface waters (Yarbro et al. 1984). 

Reduction of forest cover and wetland area limits the available capacity of the land for 

hydro logic cycling of nitrogen and phosphorus and produces more concentrated nitrogen 

and phosphorus loads, which are exported more frequently to surface waters (Hill 1978). 

Hill (1978) noted that although increasing agricultural activities have been related 

to high concentrations and exports of nutrients, landscape patterns-topography, drainage 

density, stream bank gradients, soil, and geology-are important factors that influence 

the rate at which nutrients are lost to surface waters. Therefore, the geographic scale of a 

17 



www.manaraa.com

particular water quality analysis plays an important role when modeling nutrient 

constituents. 

Geographic Scale in Water Quality Studies 

Geographic scale, as Meentemeyer (1989) described, refers to the decrease or 

increase in spatial properties or in temporal properties of a certain phenomenon within a 

particular geographic region. Meentemeyer and Box (1987) categorized geographic scale 

into two categories: 1) spatial scale and 2) temporal scale. 

Spatial scale can be expressed in absolute and relative terms. Absolute scale 

involves absolute measurements of distance, direction, shape and geometry. For 

example, watershed extent depends on the contributing area of a particular stream; as 

stream order increases the spatial extent and contributing area will increase. These 

measurements remain constant and can be expressed in absolute units, such as hectares or 

kilometers. Relative scale, on the other hand, retains these measurement properties; 

however, it conveys them based on one entity being relative to another (Meentemeyer 

and Box 1987). For example, consider nutrients being transported via overland flow 

down two hillslopes: hillslope X and hillslope Y. Nutrient travel time on hillslope X 

may be considered slow due to heavy vegetation growth, although hillslope X's length is 

shorter than hillslope Y. 

Unlike spatial scale, temporal scale involves only a single dimension and 

direction. Ecological processes can progress slowly or rapidly depending on the type of 

processes and the context in which they occur (Meentemeyer and Box 198 7; 

Meentemeyer 1989). Although temporal scale is an important concept in hydrologic 
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research, this study focuses on effects of spatial scale and does not consider the 

dimensions of time as they affect hydrologic processes. 

Geographic scale is an important factor in modeling hydrologic processes. 

Explicitly defining a scale of analysis for research studies a priori has not been the 

practice of many researchers, including geographers. The scale of the analysis is often 

determined arbitrarily, especially when data availability, or the spatial extent of 

geospatial data, is limited (Meentemeyer 1989). Study areas in this research were, for 

example, chosen on the basis of data availability. The ability to determine an optimal 

watershed extent (e.g., 4th, 5th, and 6th order sub-watersheds) for modeling annual

pollutant loads (using export coefficients) could assist watershed managers in choosing 

which land cover data ( e.g., 30 m or 10 m) are best for their modeling needs, and could 

save them the time and effort of testing and evaluating different datasets. 

This study evaluates differences in spatial scale in water quality modeling by 

measuring absolute factors of watershed extent and data resolution to determine the 

spatial extent at which coarse-resolution and fine-resolution data begin to produce similar 

model results. From the global scale to the local scale, different land cover and elevation 

data are available for use in ecological modeling applications. Differences in 

terminology regarding scale and resolution are important to consider when choosing 

different scales a priori because the spatial extent of the data may not always be related 

to the resolution of the data. For example, in a raster GIS environment, one may conduct 

a global water quality analysis with a land cover dataset that extends to all areas of the 

earth (broad scale) but has a resolution of 10 m (fine resolution); hence, the scale of the 

analysis is broad while the resolution of the data is fine. Incorporating both spatial extent 
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and resolution into their definition of geographic scale, Allen et al. (1987) noted that 

extent refers to the largest of distinctions, and resolution ( or grain) refers to the smallest 

of distinctions that can be made in an observation set. In this thesis, I will refer to 

broad-scale data as having a large spatial extent (global or conterminous U.S.) and a 

coarse pixel resolution (1 km or 30 m), while fine-scale data will be represented by a 

smaller spatial extent (state- or county-sized area) and a fine pixel resolution (10 m). 

Hydrologic Modeling and Geographic Scale 

Broad-scale ecological models have been criticized for not considering various 

chemical, organic, and physical processes in modeling calibration (Meentemeyer and Box 

1987; Meentemeyer 1989; Johnes 1996; Endreny and Wood 2003). In hydrological 

modeling, plant uptake rates, infiltration rates, hourly precipitation, evapotranspiration 

rates, and rates of other biotic processes are all used as variables for determining 

pollutant concentrations and loadings to surface waters. Hourly time-step models use 

extensive data ( e.g., hourly rainfall, 10-year water quality monitoring data, and an 

extensive soil survey) to provide detailed analysis for making inferences about current 

water quality trends and future scenarios, and these models are validated with high levels 

of confidence (Arnold et al. 1998; Di Luzio et al. 2002; Tong and Chen 2002). 

Hierarchy theory (Allen and Starr 1982) explains that lower level ecological 

variables ( e.g., plant uptake rates, infiltration rates, hourly precipitation, etc.) can be 

modeled at broader scales by extrapolating and generalizing the individual (at lower 

levels) to the entire group (at higher levels) (Allen et al. 1987). Coarse scale� are farther 

removed from basic processes, so, although these processes still exist, results from basic 

20 



www.manaraa.com

processes may not convey usable information in the model. Therefore, by choosing a 

limited set of variables that vary spatially, one can concentrate on their geography and 

compensate for the problem of scale changes (Meentemeyer and Box 1987).· For 

example, when modeling annual loads of nitrogen per hectare in a small watershed (i.e., a 

first-order stream contributing area), detailed variables of plant uptake, vegetation type, 

soil infiltration, overland flow pathway location, and runoff rates must be used to 

effectively predict loading amounts. As study area extent increases (to the entire 

watershed and surrounding watersheds), more broadly defined variables such as land use, 

slope, and terrain shape become the most effective predictors of nitrogen loading. 

Finally, at the global scale, precipitation and runoff rates are the most effective predictors 

of nitrogen loading (Meentemeyer and Box 1987). Thus, when moving from fine to 

broad scales, detailed information and basic processes are sacrificed for increasing spatial 

extent. At the same time, landscape patterns become more apparent and explain more 

about a particular phenomenon at broad than at fine scales (Allen et al. 1987; 

Meentemeyer 1989). 

Detailed hydrological models have traditionally been applied to small watersheds 

where fine-scale variables are identified and can be modeled in real time (Johnes 1996). 

In larger areas that include multiple watersheds, these models become very complex and 

difficult to calibrate because of extensive data requirements (Soranno et al. 1996; J ohnes 

1996; Sliva and Williams 2001; Endreny et al. 2003; Endreny and Wood 2003). 

Therefore, the use of detailed models that consider site-specific variables ( e.g., hourly 

precipitation and plant uptake rates) at broad scales, where landscape patterns are more 

apparent, is very cumbersome and time consuming. 
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Hierarchy theory has prompted environmental management to focus on broader 

variables for ecosystem management. Geographers and other researchers have taken 

advantage of this paradigm shift by basing more research on patterns of phenomena 

across the landscape. For example, the ecosystem approach to species protection has 

produced applications in habitat conservation planning, where ecosystems rather than 

individual species are conserved and protected (Noss et al. 1997). Similarly, the 

watershed approach to water quality management has focused on the entire watershed 

rather than specific point sources of pollution (e.g., the USEPA's Watershed Initiative of 

the 1990s). The advancement and popularity of GIS have facilitated this broad-scale 

paradigm shift, allowing fast and efficient manipulation and analysis of larger areas for 

which data file size exceeds manual computation ability. 

The Impact of Geographic Information Science (GIS) on Hydrologic Modeling 

Hydro logic modeling includes a wide variety of non-GIS, computer-based models 

that rely on different theoretical assumptions and mathematical algorithms (Tong and 

Chen 2002). These models include such efforts as the Sacramento Soil Moisture 

Accounting Model (Burnash et al.1973), Soil and Water Assessment Tool (SWAT) 

(Arnold et al. 1998), Soil and Water Integrated Model (SWIM) (Krysanova and Luik 

1989), HYDROTREND (Syvitski et al. 1988), Hydrologic Simulation Program.­

FORTRAN (Johanson et al. 1984), Groundwater Loading Effects of Agricultural 

Management Systems (GLEAMS) (Leonard et al. 1987), Simulator for Water Resources 

in Rural Basins (SWRRB) (Arnold et al.1990), Areal Non-point Source Watershed 

22 



www.manaraa.com

Environmental Response Simulation (ANSWERS) (Beasley et al. 1980), and 

AGricultural Non-Point Source (AGNPS) (Young et al. 1989). 

Over the past 30 years, researchers have used these non-GIS, computer-based 

water quality models in numerous urban and rural applications; however, the models 

were developed for smaller, data-rich areas, and were not all able to handle larger dataset 

processing and geospatial visualization that are inherent to GIS modeling. As the scope 

of ecological conservation efforts broadened, the USEP A and other government and 

private agencies began to encapsulate GIS functionality and theory into their hydrologic 

modeling efforts. The most notable GIS/hydrologic modeling effort came with the 

USEPA's release of BASINS. 

BASINS Overview 

During the mid-1990s, the USEP A Office of Water began development and 

distribution of the Better Assessment Science Integrating Point and Nonpoint Sources 

(BASINS) software system that coupled 30 years of hydro logic modeling with powerful 

GIS processing and the familiar ArcView© interface (Wittemore et al. 2000; Di Luzio et

al. 2002; Miller et al. 2002). Di Luzio et al. (2002) describe the USEPA's development 

of BASINS as setting out to achieve the following goals: (1) facilitate examination of 

environmental information, (2) support analysis of environmental systems, (3) provide a 

framework for examining management alternatives, and (4) embrace simple an� highly 

evolved models that allow for assessment of point source and NPS pollution at both 

broad and fine scales. Freely distributed over the World Wide Web 

(www.epa.gov/ost/basins), BASINS attempts to meet these goals by providing a versatile 
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toolset that can be applied to a wide variety of modeling situations in different human 

and/or natural environments. 

BASINS operates as a subsystem within the ESRI Arc View 3 .x GIS architecture. 

It provides a collection of environmental data, along with database management tools and 

hydrologic models that use powerful GIS analysis and visualization. Hydrologic models 

distributed with BASINS include SWAT, QUAL2E, the Hydrological Simulation 

Program - Windows (WinHPSF), and PLOAD. BASINS provides a seamless, 

graphically explicit interface where customized tools and models are grouped as 

Arc View extensions, enabling users to assess areas quantitatively and qualitatively by 

pointing and clicking (Arnold et al. 1998; USEPA 2001a; Di Luizo et al. 2002). The 

system is categorized into four arenas of operation and functionality: geographic 

databases, GIS tool applications, hydrologic models, and graphical output analysis and 

report writing (Whittemore et al. 2000; USEPA 2001a; Di Luzio et al. 2002). 

SW AT is a complex, daily time-step model developed by the United States 

Department of Agriculture (USDA) that aims to assess water management practices by 

simulating sediment loading and agricultural chemical production. SW AT allows users 

to study the long-term physical processes of water movement, sediment movement, crop 

growth, and nutrient cycling by considering various impacts of land use practices, 

hydrometerology, vegetation, and topography (Arnold et al. 1998; USEPA 2001a). 

QUAL2E is a simple, steady-state, one-dimensional model for simulating the 

transport of water quality constituents in streams under a given flow condition. QUAL2E 

requires a combination of user-specified point source data, reach data, and non-point­

source data for simulation (USEPA 2001a). 
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WinHPSF is a complex, lumped parameter, hourly time-step model used to 

predict runoff and in-stream water quality constituent concentrations through the 

simulation ofNPS pollution transport at a variety of temporal scales (Carrubba 2000; 

USEPA 2001). WinHPSF functionality derives from the HPSF-FORTRAN model used 

by water quality modelers for over 40 years, which is considered the most complete NPS 

pollutant-loading model available (Laroche et al. 1996; Carrubba 2000). Developed by 

AQUA TERRA Consulting, WinHSPF emulates all functionality of the older FORTRAN 

version in a Windows
© environment. Because WinHSPF considers annual, monthly, 

daily, and hourly modeling, calibration requires extensive acquisition of data, such as 

hourly meteorological data, stream networks, channel geometry, and land use (USEP A 

2001a). Although WinHSFP may be applied to a variety of study sites and projects 

(Carrubba 2000), data availability may dictate the applicability of the model. 

PLOAD is a simplified, broad-scale model that prioritizes critical watersheds by 

calculating lumped annualized pollutant loading and identifying pollutant-related 

problem areas. Developed by CH2M Hill Consulting, PLOAD provides a graphically 

explicit, user-friendly GIS interface for export coefficient modeling ( discussed in the next 

section) with minimal data requirements ( e.g., land cover, export coefficient values, and 

watershed boundaries) to produce lumped annual watershed loadings. The model can be 

applied to a wide range of water quality projects in various landscapes, and it has been 

extensively used by water quality investigators from both federal agencies and private 

consulting firms in building total maximum daily load (TMDL) reports for section 303(d) 

of the Clean Water Act (USEPA 2001b). 
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The Export Coefficient Model 

The export coefficient model (ECM) uses export coefficient values (ECV) to 

predict the export of annual pollutant loads from land use source areas to surface waters 

under conditions of uncertainty. Ideally, NPS pollution areas are identified and evaluated 

using in-stream measurements from the entire hydrologic network; however, the 

extensive amount of time and personnel needed to accomplish such a daunting task 

necessitates methods for extrapolating estimates of pollutant loading from 

incomplete/sparse data (McFarland and Hauck 2001). Recommended as an alternative to 

in-stream measurements (Reckhow et al. 1980; Beaulac and Reckhow 1982; Frink 1991; 

McFarland and Hauck 2001 ), ECV s estimate the rates at which pollutants are lost to 

surface waters per unit area of land use types annually, and they can be extrapolated to 

broad scales. Empirical studies (e.g., Lin 1972; Loehr 1974; Uttormark et al.1974) have 

observed pollutant exports from small watersheds over five- to ten-year periods and have 

provided ranges of ECV s (see Reckhow et al. 1980) that can be calibrated-based on 

local conditions of soil, rainfall, and runoff rates-and extrapolated to larger areas. 

The ECM uses a linear equation to sum annual exports of pollution by land cover 

type as: 

N 

LN = L(Epc * AJ {Eq. 1)
c=l 

where LN represents the total basin pollutant load (kg/yr), Epc is a pollutant-loading rate 

for land cover type c (kg/ha/year), and Ac is the area of land cover type c (ha) (Reckhow 

et al. 1980). Unlike the more complex models discussed earlier, the ECM does not 

require extensive hourly meteorological data or sophisticated biogeophysical equations; 
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rather, fine-scale detail is sacrificed for simplicity and readily available data that can 

generalize broader-scale watershed processes and detect spatial variability across the 

landscape (Endreny and Wood 2003). Ultimately, ECModeling conserves valuable time, 

effort, and money by providing a management team the ability to scope large areas a

priori, target critical pollutant contribution ( or risk) areas (Maas et al. 1988; Gale et al. 

1993), and prioritize them accordingly. Once critical contributing areas have been 

identified and prioritized, more extensive and detailed analyses may then be implemented 

to determine which management action will be most economically and environmentally 

productive. GIS, combined with an ECM, enables watershed managers to broaden the 

spatial scale with more ease, functionality, and robustness. For example, Wickham and 

Wade (2002) applied ECModeling with GIS to 1,000 watersheds in Maryland for 

estimating risk areas for nutrient export. Broadening the spatial scale to the state level, 

they were able to depict spatial variability of annual nutrient loading and land cover 

distribution between watersheds across a state-sized landscape, finding a strong 

relationship between areas high in agriculture or urban cover and high nutrient exports. 

Early development of ECMs relied on spreadsheet analyses of land cover metrics 

and precluded the possibility for analyzing spatial variability and landscape patterns 

(Endreny and Wood 2003). This approach has since been built upon and modified, 

incorporating more ecological variables, correcting erroneous assumptions, and further 

broadening the spatial scale. For example, traditional ECMs, such as Equation 1, portray 

each land use type as homogenous across the landscape, and assume that similar land use 

types export the same amount of load and that 100% of that load will reach surface 

waters, not considering factors of terrain and vegetation that may accentuate or attenuate 
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pollutant loadings along flow paths (Soranno et al. 1996; Endreny and Wood 2003 ). 

Furthermore, researchers have shown that nutrients often reach surface waters attached to 

sediment particles and may be deposited or transformed before they reach surface waters 

(Novotny and Chesters 1989; Soranno et al. 1996). In a raster-modeling environment, 

homogenous landscapes allow no interaction between pixel loads and their upslope 

contributing and downslope dispersal area (Endreny and Wood 2003 ), therefore missing 

any nutrient transformation or distance-decay that may occur. 

Researchers have developed several GIS-based ECMs that modify the traditional 

methods and take into account the ecological variables listed above with less uncertainty. 

For example, Mattikalli and Richards (1996) used a GIS-ECM to conduct a time-series 

analysis of ECV change in relation to land use changes over a multi year period. Soranno 

et al. (1996) developed a method that uses phosphorus (P) flux coefficients with 

traditional ECVs as a function of overland flow pathway lengths. For every unit of travel 

along the flow path, P-fluxes will attenuate P loadings and not assume 100% of P export 

will reach surface waters. Johnes and Heathwaite (1997) developed a distance-decay 

component that treated riparian corridors as critical areas for filtering nutrient loads to 

surface waters. They assigned larger land use loads for areas within 50 m from the 

stream; however the values remained static (as they were chosen a priori) and did not 

dynamically change with the variation in terrain shape and vegetation buffers. Endreny 

and Wood (2003) developed a method for weighting ECV s based on terrain and 

vegetative buffer characteristics. Unlike the method provided by Johnes and Heathwaite 

( 1997), they dynamically weighted ECV s as overland flow pathways interact with 

different terrain types and vegetative buffers, thus portraying pollutant loadings as 
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heterogenous in relation to different land use types. These advances and new approaches 

allow spatially explicit models that consider the effect of landscape features on nutrient 

export. 

The above examples provide watershed managers with more flexibility and 

functionality for ECModeling; nevertheless, the modifications to traditional ECMs all 

retain a common goal for future replication-simplicity. Successful implementation of 

these modified ECMs allows the watershed manager or researcher to reduce uncertainly 

in scoping different remediation areas by providing methods for considering other 

important biophysical factors ( e.g., nutrient distance decay) and aiming model application 

at fine or broad scales while maintaining a simple model. 

GIS provides a computing environment in which overland flow pathways, terrain 

shape indices, slope, and land cover can be processed quickly and inexpensively. Land 

cover is the primary component in any ECM, and the availability of accurate land cover 

datasets is a critical issue in ECModeling. Also, the different scales of available land 

cover datasets play an important role in ECModeling. As a watershed manager, certain 

concerns arise: Should I choose finer- or broader-scale land cover? At what watershed 

extent should I choose broad-scale land cover over fine-scale or vice versa for 

ECModeling purposes? When modeling areas at risk for high nutrient export within sub­

watersheds, will model results using broad-scale data suggest that different management 

practices need to be implemented compared to model results from fine-scale data? 

These questions stem from the growing availability of GIS and land cover data, 

and the uncertainly surrounding issues of geographic scale. Because ECModeling is 

typically used in rural watersheds due to the high amount of uncertainty associated with 
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urban ECV s (Beaulac and Reckhow 1982; Frink 1991 ), BCLR W provides an excellent 

location for conducting modified and traditional ECModeling to answer these questions. 
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CHAPTER III 

METHODS: OBJECTIVES AND DATA PREPARATION 

Project Scope and Objectives 

In this research, I test the hypothesis that an export coefficient model (ECM) 

based on broad-scale land cover data can capture enough detail to produce results 

comparable to those from an ECM based on fine-scale data at the county-mapping scale. 

Again, I identify broad-scale datasets as having a global or conterminous U.S. extent with 

a 1-km or 30-m resolution, while fine-scale datasets have a county-wide extent with a 10-

m resolution. Additionally, I answer the questions: At what watershed extent do ECM 

results produced from fine- and broad-scale land cover datasets become statistically 

different? At what watershed extent does the prioritization of sub-watersheds for nutrient 

flux change between simulations using broad- and fine-scale land cover data? Within 

sub-watersheds, is excessive nutrient export more likely to originate in the riparian zone 

or farther from the stream? Does the prioritization of areas within sub-watersheds for 

nutrient flux reduction change between simulations using fine- and broad-scale datasets, 

such that model results suggest different management scenarios? 

Specific objectives for addressing these questions include: 

1. To develop nutrient export coefficient values (EVCs) of total
phosphorus (TP) and total nitrogen (TN) from in-stream measurements
observed in BCLR W between 1998 and 2003 using a multiple
regression technique.

2. To develop two ECMs within Arc/Info© GRID© that model (a) lumped
annual nutrient loads by 4th, 5th, and 6th order stream contributing areas
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and (b) topographically weighted nutrient loads within contributing 

areas. 

3. To calibrate the ECM model against in-stream measurements taken in
the Ellejoy Creek and Nails Creek watersheds.

4. To implement an ensemble ofECM simulations that model 4th, 5th
, and

6th order sub-watershed nutrient loads using IPSI, NLCD, and LULC­
A VHRR.

5. To statistically compare model results from the three land cover datasets
at different watershed scales.

6. To employ a second ECM that uses runoff likelihood and nutrient
trapping potential to weight ECV s, allowing the researcher to analyze
export variability within each sub-watershed.

GIS and Water Quality Data 

Data for this thesis have been obtained from federal and state government 

agencies and in-stream field surveys conducted by myself and graduate students from the 

Biosystems Engineering and Environmental Science (BEES) department at the 

University of Tennessee (UT). Geospatial data, which include land cover and digital 

elevation models (DEM), were acquired from the Untied States Geological Survey 

(USGS), National Aeronautics and Space Administration (NASA), the United States 

Environmental Protection Agency (USEP A), the Multi-Resolution Land Characterization 

(MRLC) Consortium, and the Tennessee Valley Authority (TVA). The Tennessee 

Department of Environmental Conservation (TDEC) provided in-stream TP and TN 

water quality measurements taken during 1998 and 1999. Primary data collection ofTP 

and TN started in June 2003 and continued monthly until November 2003. 
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Land Cover Data 

Broad-scale land cover data are represented by 1-km resolution USGS-NASA 

Land Cover/Land Use (LCLU) and 30-m resolution National Land Cover Data (NLCD), 

while fine-scale data are represented by land cover derived from sub-meter, low-level 

aerial photography distributed as part of a multi-layer geographic database produced by 

TV A and referred to as Integrated Pollutant Source Identification (IPSI). 

Land Use/Land Cover (LULC) data were derived from Advanced Very High 

Resolution Radiometer (A VHRR) satellite imagery collected during April 1992 through 

March 1993. LULC-A VHRR is freely distributed by the USGS-NASA Land Processes 

Distributed Active Archive Center's (http://edcdaac.usgs.gov) Global Land Cover 

Characterization (GLCC) program, which characterizes the global landscape at a 1-km 

spatial resolution for use in broad-scale environmental modeling and assessment studies, 

such as global climate change and species habitat assessment (USGS-NASA 2003). 

Applying 1-km data to ECModeling at the county mapping.scale (e.g., BCLRW) is not 

practical for accurate modeling. However, incorporating LULC-AVHRR in this study 

will help determine whether general patterns of water quality variability are maintained 

as scale of the analysis expands from 4th to 6th order watersheds and from 10-m to 1-km 

resolution data. 

Derived from the Anderson Level I classification scheme (Anderson et al. 1976), 

LULC-A VHRR uses a 24-class scheme (Table A.1) that was first released in 1997 

(version 1.0) and supplemented with a modified version 2.0 in 2000. Informal data 

quality assessments have been performed on LULC-AVHRR's version 1.0, in which sets 

of randomly chosen pixels were referenced to Landsat-5 and SPOT satellite imagery, 

33 



www.manaraa.com

yielding accuracy levels between 54.9% and 78. 7% (Scepan 1999; USGS and NASA 

2003). Although no current accuracy assessments have been conducted for LULC­

A VHRR version 2.0, I have chosen to use this dataset in my analysis because it 

represents the most up-to-date version of 1-km land cover data available. 

National Land Cover Data (NLCD) are derived from Landsat-5 Thematic Mapper 

{TM) satellite imagery of the conterminous United States circa 1992 (Loveland and Shaw 

1996; USEP A 2003b ). Developed by the MRLC consortium, a group of federal agencies 

designated specifically for landscape characterization, NLCD uses a modified Anderson 

classification scheme (Anderson et al. 1976) of21 classes {Table Al) to depict land 

cover across the landscape at a spatial resolution of 30-m (Vogelmann et al. 2001; 

Konarska et al. 2002). NLCD is freely distributed by the MRLC Consortium and USGS 

at the USGS' seamless data distribution website (http//seamless.usgs.gov). 

NLCD is a supervised classification that relies on human selection of training 

grounds, with different individuals working on each state. Training grounds for 

particular land cover classes also vary by state, introducing some classification error. 

Accuracy assessments were conducted for the ten USEP A regions such that samples of 

each region's land cover were referenced to aerial photography and raw TM imagery. 

Pixels of unknown classification within the sample were compared to Landsat TM 

composite imagery and photo-interpreted 1 :40,000 scale National Aerial Photography 

Program (NAPP) images (Yang et al. 2001). Error matrices of this analysis have been 

developed by the USEP A and are available from USEP A. Overall, NLCD provides a 

good representation of land cover, with the eastern United States yielding accuracy levels 

of 59.9% for Anderson Level II and 80.5% for Anderson Level I (Yang et al. 2001). It is 
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especially appropriate for regional studies, although small amounts of classification error 

exist in the data (e.g., between row crops and pasture) (Vogelmann et al. 1998; Smith et

al. 2002). 

TV A's ISPI database is developed from low-level, high-resolution, color-infrared 

aerial photographs(< 30-cm resolution) acquired during the leaf-off season in February 

2000. GIS software and photo interpretation methods were used to analyze the aerial 

photographs, building accompanying geospatial data layers that identify a 55-class land 

use/land cover layer (Table A.1 ), hydrological network, stream bank erosion sites, 

livestock operations, and other potential sources of nonpoint pollution (i.e., quarry 

operations,junk pile sites). The IPSI land cover dataset was digitized at a 1:12,000 

mapping scale, for which the minimum mapping unit is roughly one hectare (TV A 2003). 

While IPSI includes multiple geospatial datasets, this research uses only the land cover 

dataset; for clarity, I will refer to the IPSI land cover dataset simply as /PSI. IPSI is 

distributed to watershed group clients as part of TV A's environmental program to assess 

different watersheds within and outside the TV A river system and provide clients 

assistance in watershed remediation and stream restoration (TV A 2002; TV A 2003). 

IPSI, however, only covers watershed- or county-sized areas, is site specific based on 

client needs, and is only available for client and TV A personnel usage. 

Land Cover Reclassification 

In order to compare datasets, I reclassified the land cover datasets to a common 

six-class scheme (Table 1; Figure 3). I developed this broadly defined class scheme 

based on the relevancy of each land cover type in traditional ECM approaches, and the 

availability of literature-reported ECVs. For example, Beaulac and Reckhow (1982) and 
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Table 1: Reclassified land cover composition. 

/PSI NLCD LULC-AVHRR 

Land Cover ha % ha % ha % 

Urban 19,644 11.3 7,595 4.4 2,568 1.5 
Forest 112,520 63.1 129,681 74.2 135,083 77.1 
Pasture 35,369 20.3 28,683 16.4 14,840 8.5 
Cropland 3,281 1.9 6,120 3.5 21,975 12.5 

Barren Land 1,077 0.6 389 0.2 0 0.0 
Open Water 2,594 1.5 2,013 1.2 761 0.4 

Totals 174,486 100 174,479 100 175,228 100 
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a) 

b) 

c) 

0 

Original Land Cover ReclassifiedLand Cover 

Reclassified Land Cover* 

- Urban - Forest Q Pasture Q Cropland - Barren Land - Open Water

25 Kilometers 

• Darker shades of green indicate other types of forest, which are only part 
of the original classification scheme. 

Figure 3: Land cover reclassification. (a) IPSI, (b) NLCD, and (c) LULC-A VHRR 
reclassification. 
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Frink et al. (1991) noted that a great deal of uncertainty exists when considering ECVs in 

an urban landscape. Modeling specific urban land covers ( e.g., residential, commercial, 

and transportation) with the ECM can promote unrealistic estimates of pollutant loading 

due to the complexity and interactions of human-made entities, such as storm drains and 

sewage networks (McFarland and Hauck 2001 ). Furthermore, the ECM is intended for 

rural landscape applications (Reckhow et al. 1980) where agriculture and other less 

complex land covers can be isolated as NPS pollutant contributors with greater 

confidence. In this research, I modeled urban areas as one land cover type without a 

further breakdown of land cover subcategories. I aggregated agricultural land into 

Pasture and Cropland, two broadly defined land uses, because of their differences in 

NPS pollutant fluxes (Beaulac and Reckhow 1982). For example, differences in fertilizer 

application type and quantity between tobacco crops and pasture grasses will lead to 

different amounts of nutrient export. 

Itemizing the IPSI, NLCD, and LULC-AVHRR land cover types into this six­

class scheme was based on broadly defined class definitions of the original data (if 

available), and the impact that each land cover type may have on fluxes of nutrient 

loadings to surface waters. NLCD and IPSI are classified in a hierarchical manner so that 

detailed descriptions of land cover types exist within more broadly defined categories 

(Table A. l ). Figure 3 illustrates the change in land cover composition from detailed land 

cover classes to the generalized six-class scheme, while Table A.2 provides a detailed 

reclassification overview; my basis for itemizing classifications is discussed further 

below. 
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Urban reclassification for NLCD and LULC-AVHRR included all residential 

(low and high density), commercial/transportation and industrial land uses, along with 

residential development and urban grasses (e.g., parks and golf courses). The IPSI 

reclassification included the same land use types and all those included in IPSI' s broadly 

defined categories (Table A.2). Forest reclassification combined all forested NLCD and 

LULC-A VHRR land cover types of deciduous, coniferous, and mixed forest. Park and 

Great Smoky Mountains National Park (GSMNP) land cover from IPSI were also 

grouped within this category. GSMNP and park land cover types were developed with 

the assumption that all GSMNP areas-excluding Cades Cove, a grassland area-are 

complete forest cover. Because IPSI is developed specifically for locating NPS pollution, 

forest land cover was generalized during development into one class and not separated 

into individual forest types (TVA 2003). I categorized all wetland land cover identified 

by IPSI and NLCD into the Forest reclassification because, like forested areas, they 

reduce nutrient loads to surface waters (Yarbro et al. 1984; Preston and Bedford 1988; 

Wickham and Wade 2002). LULC-AVHRR does not capture these areas within the 

study area. 

Pasture reclassification included all agricultural land that functions as livestock 

grazing land. Mixed pasture/woodland land use classes identified by IPSI and LULC-

A VHRR were included in Pasture due to their presence as livestock areas. Although 

IPSI classified Cades Cove as grassland, NLCD identified it as pasture. I grouped this 

area into the Pasture class due to its function as a forage area for larger, terrestrial 

wildlife species. LULC-A VHRR classifications of grassland and savanna, which define 

areas of natural and/or prairie grasses, were also reclassified to Pasture. Natural savanna 
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grasses are typically found in midwestem prairie landscapes and are not indigenous to 

eastern Tennessee. 

Cropland reclassification included all cultivated lands. I included all row­

cropping land uses from the three land cover datasets as well as the IPSI classifications of 

orchards, vineyards, and nurseries in this reclassified category. Although the nutrient 

generation from row and cover crops may differ, I could not reclassify row and crops into 

their own class because the original land cover classification only identifies a single 

category for cropland and does not identify individual crop types. 

Barren Land reclassification included all barren, clear-cut, and transitional land. 

IPSI' s disturbed areas, landfills, mining, quarries, borrow, and forest clear-cut land 

covers were included in this category. Likewise, NLCD land cover of bare rock/soil, 

quarry operations, and transitional land were included in this group. Transitional land is 

defined as areas changing (with< 25% vegetative cover) from one land cover to another 

because of a certain land use activity such as residential development, forest fire, or other 

vegetative clearing activities (USEP A 2003b ). 

Elevation Data 

The USGS freely distributes seamless 30- and 10-m digital elevation models 

(DEM), which are part of the National Elevation Dataset (NED) program and cover most 

United States regions (http://seamless.usgs.gov). Thirty- and 10-m NED are corrected 

versions of the older DEMs typically derived from existing USGS topographic maps and 

stereo photogrammetry (Garbrecht and Martz 2001). The NED program was 

implemented to spatially correct previously developed DEMs that exhibit human-caused 
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( e.g., data collection and rounding) and systematic errors. Systematic error results from 

mosaicking smaller (7.5-minute quadrates) DEMs and changing mapping projections. 

NED is distributed as a seamless dataset that incorporates one common projection, 

eliminating many of the systematic errors associated with older DEMs. The 30-m NED 

is available for the conterminous United States, while 10-m NED datasets are available 

for only selected, state-sized areas, which include Tennessee. 

DEMs are an important asset to hydrologic modeling applications. DEMs are 

raster-based geospatial layers in which elevation values are stored in a matrix of cells 

such that each cell contains only one elevation value and rows and columns within the 

matrix represent locations on the earth. The simplicity in aggregation of data within the 

raster DEM promotes quick and effective computation ability, allowing modeling and 

evaluation oflarge areas in a short amount of time (Garbrecht and Martz 2001). Well­

developed research has incorporated DEMs into a variety ofhydrologic modeling efforts, 

and, over the years, the possibilities of modeling hydrologic systems with DEMs have 

spawned new methods and techniques for modeling broad-scale hydrologic processes 

such as flow path extraction (O'Callaghan and Mark 1984; Quinn et al. 1991; Tarboton 

1997), runoff processes (Beven 1995; Endreny and Wood 2001), drainage area 

delineation (Abt et al. 1995), and flood simulation (Colby et al. 2000). 

In this research, 30-m NED represents broad-scale elevation data, while 10-m 

NED represents fine-scale elevation data. Global DEMs of 1-km resolution are available 

from the USGS-NASA Land Processes Distributed Active Archive Center 

(http://edcdaac.usgs.gov/main.asp); however, I excluded this dataset from the weighted 

ECM computation because 1-km data, simply put, are not practical for modeling nutrient 
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export within 4
th, 5 th, or 6th order watersheds. The raster modeling approach I have 

chosen requires each set of land cover and elevation data (30-m and 10-m) to maintain 

the same spatial projection and resolution. The land cover datasets are distributed in a 

variety of different mapping coordinate systems and projections; therefore, I transformed 

all geospatial data, including NED, to the State Plane Coordinate System with a Lambert 

Conformal Conic projection. IPSI land cover is distributed as a vector geospatial layer as 

it has been digitized from aerial photographs. In maintaining common spatial resolutions 

between land cover and DEMs, I converted IPSI land cover to a 10-m raster data format 

in order to represent the fine-scale land cover. 

Water Quality Data 

Stream quality data for this thesis incorporate both primary data collected by 

myself and other UT graduate students, and secondary data acquired from TDEC. In­

stream water quality measurements were used for the BCLR W-ECM calibration and 

ECV development. Primary data collection was part of a collaboration between UT -

BEES, TVA, and TDEC to develop a Total Maximum Daily Load (TMDL) report, as 

required by Section 303( d) of the US Clean Water Act (USEP A 2003c ), for the Little 

River tributaries ofEllejoy Creek and Nails Creek. 

Secondary data, collected by TDEC, included stream water quality from June 

1998 to October 1998 for the Little River watershed. These data were from 14 sampling 

sites located along the Little River where tributary reaches converge with the main steam 

(Figure 4). TDEC complemented 1998 data with a three-month-April, August, and 

December 1999-sampling survey, collecting from two sampling sites (Figure 4) located 
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Figure 4: TDEC sampling site locations. 
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in southern Blount County. Both 1998 and 1999 data included phosphate and nitrite­

nitrate species which were measured in grab samples taken during base flow conditions. 

Data were analyzed in Tennessee State Health Department laboratories that maintained 

TDEC and USEP A Office of Water Resource Control (WRC) quality control standards. 

Primary stream quality data were collected monthly from June 2003 through 

November 2003. We sampled 12 sites along Ellejoy Creek and Nails Creek, which are 

tributaries of the Little River (Figure 5). Following sampling procedures used by TDEC 

in 1998 and 1999 and USEP A WRC lab standards, grab samples were analyzed by BEES 

laboratories. 

I computed TP and TN nutrient counts from both TDEC and BEES samples by 

using the sum of total kjeldahl phosphorus (TKP) and total phosphate (PO4) 

measurements to represent TP, and the sum of total kjeldahl nitrogen (TKN), total nitrate 

(N03), and total ammonia (NH4-TN) to represent TN. These individual nitrogen and 

phosphorus species are susceptible to seasonal variations in concentration levels; thus, the 

ECModeling approach uses total representations of individual phosphorus and nitrogen 

species, allowing more reliable indicators of variations in nutrient loading annually 

(Yarbro et al. 1984; Johnes 1996; Johnes and Heathwaite 1997). 

We determined stream flow at each site with a Swoffer 3000 portable flow meter 

that measured flow velocity rates (m/sec) with a 30-sec count. To compute flow 

discharge rates (m3 /sec), we collected flow velocity rates (m/sec) at 1-m intervals across 

the channel and noted the depth at each interval. Water depths were averaged and 

multiplied by the total channel width to give stream channel area. We then averaged flow 

velocities at each 1-m interval width and multiplied those products by the channel area to 
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Figure 5: Ellejoy Creek and Nails Creek sampling sites. 
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give a discharge rate (Watson and Burnett 1995). Stream flow rates from 1998 and 1999 

had been obtained by TDEC in a similar manner. Although many methods exist for 

calculating stream discharge, we used TDEC's method to keep continuity between 

primary and secondary data collection methods. 

Data used in this research are not continuous over the five-year sampling period 

(1998 to 2003). No sampling was conducted within BCLRW during the 2000-2002 

period, which may cause misrepresentations of stream chemistry in BCLRW. BCLRW 

does not contain any continuously monitored streams ( e.g., USGS Gauge Station 

streams); hence, water quality sampling in this area has been limited and relies primarily 

on TDEC sampling efforts. Additionally, water quality sampling was part of an ongoing 

project to develop TMDL reports for Ellejoy and Nails creeks; therefore, sampling sites 

were selected by TDEC personnel with the purpose of providing a basic representation of 

water quality conditions along Ellejoy and Nails Creek. While a representation of the 

entire study area would be more practical for this thesis, the limited amount of existing 

data and limited time prevented me from conducting a more extensive water quality 

survey. 

Sub-Watershed Delineation 

Each sub-watershed layer (Figure 6) was computed from the 10-m DEM using 

hydrologic modeling tools available within GRID©. The 10-m DEM represents the finest 

representation of elevation available for the area, as watershed boundaries created 

from this dataset are more detailed than those from the 30-m or 1-km data. I used a five­

step watershed delineation process that (1) calculates flow direction, (2) calculates flow 

46 



www.manaraa.com

a
) .i::..

 
-....J

 

N
=

8
3
4
 

M
e
an

 =
2
0
9

h
a 

: 
0

 
5

 
1
0

 
2

0
 

Ki
lo

m
e

te
rs

 
I

 
I

 
I

 
I

 
I

 
I

 
I

 
I

 
I

 

F
ig

u
re

 6
: 

S
u

b
-w

at
er

sh
ed

 m
ap

p
in

g
 e

x
te

n
t. 

M
u

lt
ip

le
 l

ev
el

s 
o
f 

su
b
­

w
at

er
sh

ed
 e

x
te

n
t 

ar
e 

re
p
re

se
n
te

d
 b

y
 (

a)
 4

th
, 

(b
) 

5
th

, 
an

d
 (

 c)
 6

th
 o

rd
er

 s
tr

ea
m

 c
o
n
tr

ib
u

ti
n
g
 a

re
a 
. 

b
) c)

 

N
=

 
19

4
 

M
e
an

=
 
8

4
8

 h
a
 

N
=

5
2
 

M
e
an

 =
 
3
,4

2
0
 h

a
 



www.manaraa.com

accumulation, (3) extracts flow paths, (4) determines stream order, and (5) determines 

drainage areas for each stream of specified order. The flow accumulation algorithm with 

GRID<e uses the Deterministic 8-node (D-8) method (O'Callaghan and Mark 1984), 

whereby only the steepest angle of descent between eight neighboring pixels is extracted 

on a pixel-by-pixel basis. 

The D-8 method works well in areas where terrain is rugged, and flow usually 

follows a single descent path because of the extreme differences in one elevation pixel to 

the next. However, flat, gently rolling terrain may be problematic for the D-8 method 

because pixel-by-pixel elevation differences are less apparent, creating multiple flow 

paths; runoff has multiple pathways to travel rather than one distinct descent. BCLRW 

consists of mostly rugged terrain; however, bottomland areas follow a more gently rolling 

topography. While alternative flow path extraction algorithms that perform better in flat 

terrain exist-the Multiple Flow (Quinn et al. 1991) or DEMON (Costa-Cabral and 

Burges 1994)--only the D-8 method was used in this research. Flow paths are identified 

by the number of pixels accumulated into one another. The output flow path layer 

assigns an accumulated pixel count to each pixel's attribute value. Pixel values with 

higher counts identify those pixels that are likely to be a stream channel or drainage path. 

In this research, I identify streams by extracting pixels from the 10-m DEM that 

accumulated 500 or more upland pixels. Assuming that NED 10-m DEMs are the most 

accurate representation of elevation, I use only this layer for defining sub-watershed 

boundaries. The pixel accumulation layer was derived from a 10-m DEM free of 

depressions. DEM depressions are systematic errors that arise during the DEM 

development from erroneous (human) data collection or, in most cases, the changing of 
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precision (e.g., rounding from floating-point to integer values) (Garbrecht and Martz 

2001). Depressions in the DEM interrupt overland flow path extraction and therefore 

must be filled. While topographic depressions exist in the landscape and may serve as 

runoff (Dunne and Leopold 1978) and/or nutrient storage, it is uncharacteristic for 

topographic depressions in the eastern United States, even in karst regions, to be equal to 

pixel-sized areas (e.g., 100 m2
) (Mark 1984). While NED attempts to minimize 

systematic errors, removing depressions will further insure correct hydrologic extraction. 

I used a subsequent stream-ordering algorithm to calculate stream order, which computes 

order based on the Strahler method (See ESRI 2004), and, finally, sub-watershed 

boundaries. GIS layers illustrated in Figure 6 identify resulting 4th, 5th, and 6th order 

stream contributing area boundaries that serve as the sub-watersheds within BCLRW. 

Fourth order sub-watersheds average 209 hectares (N = 834), 5
th 

order sub-watersheds 

average 848 hectares (N = 194), and 6
th order sub-watersheds average 3,420 hectares (N 

= 52). These three GIS layers represent watershed mapping extents in the ECModeling 

processes discussed in Chapter IV. 

BCLRW includes both political (Blount County) and natural boundaries (Little 

River watershed). I clipped sub-watersheds that extend beyond the Blount County 

political boundary, leaving only portions of those sub-watersheds. Simply excluding the 

entire area of bordering sub-watersheds usually resulted in a significant loss in total study 

area. Once sub-watershed boundaries were defined, I calculated ECV s from in-stream 

measurements and/or values reported in empirical studies in the literature. 
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CHAPTER IV 

METHODS: THE EXPORT MODEL APPROACH 

The export coefficient model (ECM) is a simple water quality model that uses 

commonly available data, such as land cover, elevation data, and export coefficient 

values (ECV) to model broad-scale watershed processes (Reckhow et al. 1980; Frink 

1991; McFarland and Hauck 2001). Using readily available land cover data and ECVs, 

which are annual estimations of pollutant loading per land cover area unit, ECModeling 

assumes that for similar climatic regimes a given land cover will export a known amount 

of nutrients. Under this assumption, it is possible to estimate a watershed's total nutrient 

load entering surface waters (Winter and Duthie 2000). This research uses two variations 

of ECModeling; an unweighted ECM, and a weighted ECM. The unweighted ECM uses 

land cover measurements and ECV s to sum nutrient export by sub-watershed and allow 

for an examination of variability between watersheds. The weighted ECM approach uses 

runoff likelihood and vegetative trapping ability to weight ECV s to the landscape, which 

allows for an examination of export variability within each sub-watershed. 

Built within a GIS framework, either ECM allows the researcher to evaluate 

broad-scale areas for water quality remediation a priori by visualizing risk areas and 

prioritizing them accordingly (Johnes et al. 1996; Endreny and Wood 2003). I have 

developed both ECMs in Arc/Info© GRID© and calibrated the BCLRW-ECM against in­

stream readings taken within Ellejoy Creek and Nails Creek watersheds. I used 

unweighted and weighted ECMs in two separate analyses. Weighted ECM results were 

used to determine where high nutrient export levels are most frequently occurring within 
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watersheds, and whether management needs ( e.g., riparian restoration) change between 

land cover simulations. 

I used results from the unweighted ECM to compare total watershed nutrient 

summations and answer the questions: At what watershed extent (4th, 5th
, or 6th order

contributing areas) do model results between three land cover datasets become 

statistically identical? At what watershed extent does the prioritization of sub-watersheds 

for remediation of excessive nutrient flux change between simulations using different 

land cover datasets? 

The remaining sections of this chapter discuss calibration of each ECM, and their 

implementation in the GIS framework. In addition, the chapter discusses a preliminary 

statistical analysis in which I attempt to calculate nutrient ECV s of total phosphorus (TP) 

and total nitrogen (TN) from in-stream water quality measurements. In this preliminary 

analysis, I review the background, methods, and results of ECV calculation. 

Export Coefficient Value Calculation 

Background and Methods 

Based upon the work of Hodge and Armstrong (1993) and McFarland and Hauck 

(2001 ), I use a multiple regression technique for calculating export coefficient values 

(ECV) from in-stream nutrient measurements. Drainage areas above each water quality 

sampling site within BCLRW contain a mix ofland cover types and vary in size (Table 

A.3). Ideally, developing ECVs involves several years of field plot observation to isolate

pollutant export from individual land uses (Reckhow et al. 1980; McFarland and Hauck 

51 



www.manaraa.com

2001 ). Published ECV s have been derived from empirical investigations whereby 

researchers conducted three- to ten-year experiments on agricultural, forested, and urban 

land uses from several different geographic regions (Beaulac and Reckhow 1982), 

including the southeastern United States (i.e., Alabama, Georgia, and North Carolina). 

While field plot observations may be the most intuitive approach for estimating ECV s, 

watersheds (small and large) include varying land uses; and, as the geographic scale 

increases to county- or state-sized areas, monitoring single land use watersheds for 

developing ECV s becomes unrealistic. Alternatively, the multiple regression approach 

isolates different nutrient-source land uses by associating in-stream constituent 

concentrations ( mg/L) with surrounding land cover composition such that concentrations 

are portrayed as annual exports per land use area by land use type (kg/ha/year). 

The multiple regression technique employed by McFarland and Hauck (2001) 

assumes a linear relationship between land cover composition within the drainage area 

above each sampling site and in-stream constituent concentrations. However, this 

method does not account for spatial location of land uses within the drainage area, which 

can be problematic in other study areas, such as BCLRW. For example, in drainage areas 

where a dairy farming operation is located in the riparian zone immediately upstream 

from an in-stream measurement and forest occupies the remaining drainage area, forest 

would be assigned a high total nitrogen (TN) ECV (because it occupies a high proportion 

of the total drainage area), obscuring the reality that the riparian dairy operation is the 

main TN exporter. Therefore, I modified this regression model to only include land 

cover within 200 m of the stream, rather than land cover from the entire drainage area. 

52 



www.manaraa.com

The multiple regression model follows a three-step process. First, I calculated the 

drainage area above each sampling site, developed a 200-m buff er around all streams 

within the drainage area, and tabulated the proportion of land cover composition within 

the buffer (Table 2). Drainage area delineation was similar to the ordered watershed 

delineation, except calculations originated from each sampling site's XY coordinates 

rather than ordered streams. Because IPSI is the most detailed and up-to-date ( ca 2000) 

land cover representation available for the study area, I used only this dataset for 

depicting land cover within drainage areas. Land cover proportions extracted from the 

buffered areas were used as independent variables. I chose a buffer width of 200 m based 

on research conducted by the USEP A (2002) in the Clinch and Powell Valley Watershed, 

Virginia, which is located within the same physiographic providence as BCLRW. 

USEP A (2002) found a strong correlation between riparian land cover and overall stream 

habitat where riparian zones extend 200 m across the streams, but weak correlations 

where riparian widths were > 200 m. 

Second, I annualized concentrations of TP and TN by combining flow volumes 

and in-stream constituent concentrations. TP and TN concentrations (mg/L) were 

converted to kilograms per cubic meter (kg/m3), multiplied by flow volumes (m3 /second), 

and portrayed annually (kg/year) to represent a total annual pollutant flux. Annual TP 

and TN (kg/year) loads were normalized by the area within each riparian buffer to give 

an estimate of nutrient load per area unit (kg/ha/year). Table 3 summarizes these 

calculations as average flow volumes and nutrient fluxes for the riparian zone of each 

sampling site's riparian zone. TDEC, for unknown reasons, did not include flow data for 
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Table 2: Riparian land cover composition associated with drainage areas above each 

sampling site. 

Urban Forest Pasture Cropland Barren Land Tota/Area 

Site (%) (%) (%) (%) (%) (ha) 

ECI 4.7 52.7 36.9 4.2 0.3 2,531 

EC2 4.2 51.2 38.9 4.5 0.3 2,171 

EC3 6.4 18.7 69.7 2.8 1.2 412 

EC4 3.7 60.6 32.1 2.9 0.0 1,468 

EC5 4.0 54.1 40.6 1.0 0.0 936 

EC6 3.3 82.8 13.8 0.0 0.1 370 

EC7 4.0 33.8 61.7 0.0 0.1 350 

EC8 5.2 79.3 15.5 0.0 0.0 373 

LRI 1.4 93.9 4.3 0.0 0.0 6,781 

LR2 0.0 100.0 0.0 0.0 0.0 5,671 

LR3 1.5 92.7 5.3 0.0 0.1 7,167 

LR4 2.0 91.7 5.7 0.1 0.1 7,939 

LRS 3.3 86.0 9.3 0.0 0.0 1,912 

LR6 1.7 88.9 9.2 0.0 0.0 871 

LR7 2.9 88.7 7.1 0.3 0.1 11,296 

LR8 9.9 45.8 41.8 1.8 0.3 1,646 

LR9 4.7 52.7 37.0 4.2 0.3 2,529 

LRI0 4.2 76.5 16.7 1.2 0.3 15,889 

LR12 5.2 71.5 20.2 1.6 0.4 17,600 

LTI 10.4 29.6 52.6 7.0 0.2 632 

LT2 5.3 72.l 21.6 0.1 0.1 1,247 

NCI 17.1 25.2 53.3 3.6 0.5 704 

NC2 18.0 25.8 52.0 3.5 0.4 669 

NC3 24.3 25.8 48.5 0.1 0.8 427 

NC4 41.6 22.7 35.5 0.1 0.0 131 
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Table 3: Annualized riparian nutrient fluxes associated with drainage areas above 
each sampling site. 

Flow Volume TP TN 

Site m
3
/yr m

3/ha/yr kg/yr kg/ha/hr kg/yr kg/ha/yr 

ECl 18,222,656 7.201 14,855 5.87 56,387 22.28 

EC2 13,769,362 6,343 10,970 5.05 40,462 18.64 

EC3 2,494,678 6,055 1,993 4.84 8,911 21.63 

EC4 6,462,565 4,401 5,825 3.97 15,750 10.73 

EC5 5,885,575 6,289 5,136 5.49 17,486 18.68 

EC6 1,586,064 4,282 1,694 4.57 2,644 7.14 

EC7 1,821,897 5,211 1,231 3.52 5,592 15.99 

EC8 1,166,989 3,127 981 2.63 1,764 4.73 

LRl 6,076,861 896 33 0.00 2,650 0.39 

LR2 8,494,537 1,498 139 0.02 1,291 0.23 

LR3 2,474,188 345 129 0.02 1,044 0.15 

LR4 12,542.246 1,580 263 O.Q3 9,382 1.18 

LR5 18,265,903 9,551 621 0.32 10,558 5.52 

LR6 10,571,372 12,139 296 0.34 9,155 10.51 

LR7 18,230,583 1,614 547 0.05 14,694 1.30 

LR8 1,582,350 962 32 0.02 665 0.40 

LR9 7,897,624 3,123 142 0.06 2,575 1.02 

LRlO 71,638,439 4,509 90 0.01 8,955 0.56 

LR12 94,349,405 5,361 4,859 0.28 29,720 1.69 

LTl 12,538,714 19,830 88 0.14 4,012 6.35 

LT2 14,949,325 11,988 149 0.12 12,333 9.89 

NCI 10,285,076 14,611 1,282 1.82 17,995 25.56 

NC2 10,915,509 16,310 11,902 17.78 19,864 29.68 

NC3 3,174,031 7,438 390 0.91 10,768 25.23 

NC4 1,574,901 12,016 171 1.31 4,097 31.26 
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LRl 1, LR13, and LR14 measurements; therefore, these sampling sites were omitted from 

the analysis. 

Third, I developed a multiple regression model such that loadings per unit area 

(kg/ha/yr) at each sampling site were the dependent variable, while proportions of land 

use in the stream buffers above each sampling site were the independent variables. The 

regression coefficients generated from this analysis may then be used as BCV s in the 

ECM. 

Results and Discussion of Export Coefficient Value Calculation 

Overall regression results indicate that the independent land cover categories do 

not explain a large proportion of the variability in TP and TN annual loads (R 2 = 0 .10 

where a = 0.05). Table 4 illustrates coefficient estimates for the five land cover classes, 

the associated standard error, and significance level. None of the TP and TN coefficient 

values for the land cover variables were found to be statistically significant. Moreover, 

negative TN coefficients produced from the barren land variable are considered 

unacceptable as an export coefficient because previous research supports the expectation 

of some positive loading from all land cover (Reckhow et al. 1980; Beaulac and 

Reckhow 1982; Frink 1991; McFarland and Hauck 2001; Winter et al. 2002). The 

McFarland and Hauck (2001) method used land cover proportions from an entire 

drainage area above each sampling site, rather than only those found in the 200-m 

riparian zone. They found the multiple regression models for TP and TN to be highly 

significant (p = 0.0001 and R2 = 0.95 where a = 0.05). I conducted an analysis using 

land cover from the entire BCLR W sampling site drainage areas, but still found no 
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Table 4: Multiple regression model coefficient estimates for nutrient loadings as 
a function of land cover percent in BCLRW. 

TN (kg/ha/yr) TP (kg/ha/yr) 

Land Cover 
Parameter 

p-Value
Parameter 

p-Value
Estimate Estimate 

Urban 1.64± 10.05 0.87 0.50 ±0.83 0.55 

Forest 0.69± 10.10 0.95 0.49 ±0.85 0.56 

Pasture 1.06± 10.15 0.92 0.50± 0.84 0.55 

Cropland 0.79 ± 11.11 0.94 0.94±0.94 0.32 

Barren Land -1.12 ± 23.88 0.96 1.03 ± 1.92 0.59 
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statistically significant coefficient values. Below, I identify three primary reasons for the 

lack of significant ECV s from multiple regression that uses land cover from the entire 

sampling drainage area or from the 200-m riparian zone. 

First, a high level of multicollinearity exists between the independent land cover 

variables-particularly between forest and pasture. Most drainage areas within BCLR W 

are primarily composed of forest and pasture land; thus, as one increases the other 

decreases, creating negative correlations. To limit this, McFarland and Hauck (2001) 

simply combined land covers and omitted those land covers that characterized only a 

small proportion of the total drainage area. However, land cover within BCLR W has 

already been reclassified (see the CHS and Water Quality Data Section) and any further 

reclassification would be unreasonable. For example, combining pasture and forest is 

unreasonable for predicting annual TN exports because empirical studies have shown 

dramatic differences in TN exported from pasture versus forest land (See Chapter II). 

Second, in-stream water quality data collected from BCLRW include only three 

sampling years (1998, 1999, and 2003), and continuous sampling within each sampling 

year does not exceed a six-month period. Data in the McFarland and Hauck (2001) study 

were collected bi-weekly and spanned a continuous 4-year period. Moreover, in 

BCLRW, all sampling was conducted during base (or low) flow conditions and two to 

three days after storm events. A more extensive and continuous BCLR W water quality 

survey that included storm events would be more representative of stream dynamics and 

might improve regression model results. However, the timeframe of this study prevented 

me from conducting a more extensive survey, and the data provided by TDEC were the 

only available. 
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Third, the multiple regression method (using land cover either from the entire 

sampling drainage area or from the riparian zones) assumes that land cover within the 

contributing area of each sample contributes 100% of the load flowing through that site. 

This assumption is problematic in that it does not consider additional nutrients that 

already exist in the stream from upland stream reaches that are beyond the sampling site's 

contributing area or decay that may occur as the nutrient flows through the drainage 

network. 

The multiple regression model employed in BCLR W was unsuccessful for 

determining ECV s in BCLRW. Therefore, I calibrated the ECM with literature-reported 

values. Literature-reported values are widely available in a number of US EPA reports 

and environmental articles. They vary considerably depending on temporal scale and 

geographic region (Beaulac and Reckhow 1982) and thus must be calibrated to the study 

area. 

Export Coefficient Model Calibration 

The ECModeling approach, discussed further in the next section, requires one 

ECV for each input land cover class; hence, model results will be dependent on the input 

ECV. Nutrient ECV s cited in the hydro logic literature are highly variable; a number of 

interrelated factors contribute toward differences in nutrient loads, including climate, soil, 

and local land use management. Differences in ECV s may also arise from both 

measurement and/or estimation error (Reckhow et al. 1980; Beaulac and Reckhow 1982). 

To represent the uncertainty associated with literature-reported ECVs, I conducted a 
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sensitivity analysis using ECVs observed in similar climatic regimes as BCLRW. 

BCLRW is characterized by a temperate climate, with high rainfall, and primarily clay 

and silt loam soils with low infiltration rates (TV A 2003; Eric Henry, personal 

communication). Table A.4 illustrates the wide range ofECVs reported for the 

southeastern United States. All ECV s presented in Table A.4 were observed in 

southeastern regions, where climatic conditions are similar to BCLRW. Using the TP 

and TN distributions in Table A.4, I computed minimum, lower, median, upper, and 

maximum quartile ECV s for each land cover class (Table 5) (Winter et al. 2000; 

Wickham and Wade 2002; Endreny and Wood 2003). 

Each quartile ECV ( of TP and TN) was modeled individually and compared to 

water quality data collected from sampling sites EC 1 and NC 1 (Figure 5). Because 

BCLRW is not entirely defined by natural watershed boundaries, I was unable to 

calculate a cumulative nutrient flux for the entire study area. Furthermore, Little River 

Watershed sampling locations selected by TDEC in 1998 (Figure 4) did not include a site 

located at the river mouth, which would capture loading from the entire drainage area. 

Therefore, I have concentrated model calibration on Ellejoy Creek and Nails Creek, 

which are smaller sub-watersheds (Figure 5). These two sites are at pour points and 

capture water quality for the entire Ellejoy and Nails Creek drainage area. I computed 

annual nutrient fluxes (kg/yr) at sites EC 1 and NC 1 by combining in-stream nutrient 

concentrations (mg/L) with flow measurements (m3/sec) (See the previous section­

Export Coefficient Calculation-for more details). Five samples were taken at both EC 1 

and NCl between June and November 2003. I repeated the annual flux calculation for 

each sample reading. Then, I averaged annual loads from NCl and ECl separately and 
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summed their quotients. The summation represents the total nutrient load for both 

Ellejoy and Nails Creek watersheds portrayed as an annual flux (kg/yr). 

In order to compare differences in model results from different land cover 

datasets, a common set ofECVs must be selected and used in both models. The 

sensitivity analysis allowed me to assess overall change of model prediction by quartile 

simulation and choose one set of ECV s. Each simulation was calibrated against the data 

collected at ECl and NCl, and the ECV quartile which produced the best results 

compared to observed loading was selected. While lumped summation of total nutrient 

load produced from weighted and unweighted ECMs should be similar, I implemented 

the sensitivity analysis for these models separately. Assuming that IPSI is the most 

accurate land cover dataset, I limited model calibration to this dataset only. Results of 

the sensitivity analysis are presented and discussed in Chapter V. 

The Unweighted Export Coefficient Model 

The traditional ECM (see Equation 1) method considers area and land cover type 

for assigning one lumped summation of nutrient export to each sub-watershed, which is a 

simple approach that allows the researcher to analyze pollutant export variability between 

watersheds and prioritize them accordingly. The broad-scale nature of the unweighted 

model is especially useful in regional studies that, for example, examine the degree of 

nutrient variability between 1,000 watersheds within a state boundary or between 8-digit 

HUCs across the Mid-Atlantic (Jones et al. 1997; Wickham et al. 2002; Wickham and 

Wade 2002). However, when examining nutrient risk variability between sub-watersheds 
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within a county mapping region, uncertainties in land cover scale arise. In this research, 

the unweighted ECM provides a method for examining the level of uncertainty between 

land cover datasets in nutrient-loading simulations within a county-sized mapping region. 

I implemented an ensemble of unweighted ECM simulations that swapped 10-m 

(fine scale), 30-m (broad scale), and 1-km (broad-scale) land cover datasets. The 

simulations were employed at the 4
th, 5th, 

and 6th order watershed extent for both TP and 

TN. I compiled nutrient model results produced from the three land cover datasets at 

multiple watershed extents and statistically tested, using a one-way ANOV A (SPSS 

2001), for differences between result-group means. Using the mean, a one-way ANOVA 

tests for difference within and between groups and assumes normality within each 

dataset. Model results from each land cover simulation were negatively skewed; 

therefore, I transformed (natural logarithm) each result-group distribution a priori and 

removed outliers-null and zero values (Figures A.1 and A.2). The natural logarithm 

transformation will compute null values where original values are zero and negative 

values where original values are less than one. Including the negative values will distort 

the transformed distribution. 

In addition to the ANOV A analysis, I aggregated nutrient export by watershed 

into four classes ( or rankings) of prioritization and constructed a correlation matrix that 

examines changes in the prioritization of watersheds for nutrient export between IPSI­

and NLCD-based simulations. The correlation analysis graphically maps exactly which 

and how many watersheds changed prioritization between simulations, allowing for a 

better understanding of differences between ECModeling with broad- and fine-scale data. 
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The Weighted Export Coefficient Model 

Traditional ECModeling methods assume TP and TN exports are homogenously 

distributed across the landscape such that each similar land cover type exports the same 

nutrient load and 100% of that load reaches surface waters. The traditional ECM 

evaluates land cover composition within a watershed, assigns a nutrient ECV to those 

land covers ( e.g., 2.3 kg/ha/year), and summarizes the total nutrient export for the entire 

watershed. Lumped summation of nutrient export by watershed does not allow the 

researcher to analyze spatial variability and prioritize risk areas within the watershed. In 

raster GIS, this shortfall is emphasized as traditional methods consider each pixel as a 

pollution source and do not consider the interaction between the other pixels' land cover 

type and topographic orientation, which either attenuate or accentuate loading levels 

(Endreny and Wood 2003). 

When modeling broad scales (e.g., county- or state-sized areas), higher order 

variables, such as topography and land use begin to control pollutant fluxes and should be 

included in hydrologic modeling efforts (Meentemeyer 1989) while keeping modeling 

techniques simple (Soranno et al. 1996; Johnes et al. 1996; Sliva and Williams 2001; 

Endreny and Wood 2003). The ability to examine heterogeneously distributed nutrient 

exports in raster GIS allows the researcher a more detailed modeling technique (e.g., 

ranking 100-m2 or 900-m2 areas, rather than entire watersheds), while maintaining the 

simplicity and timeliness of traditional ECModeling at the county mapping level. The 

combination of traditional ECM methods and work by Beven and Kirkby ( 1979), Bev en 

(1995), and Endreny and Wood (2003) provide a raster-based ECModeling approach that 
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computes topographic {TI) and buffering (BI) indices which dynamically weight ECV s to 
these higher order landscape variables and allow the researcher to identify spatial 
variability of nutrient export within the watershed. 

The Topographic Index (Tl) 

The raster-based TI model identifies watershed areas that have a high potential of 
saturation after a significant rainfall or snowmelt event and thus a high likelihood for 
producing runoff. The model uses an index of wetness based on topography to illustrate 
the variability in hydrologic response from different areas within the watershed by 
determining the relationship between a pixel's upslope contributing area, per contour 
length, and slope. The TI is expressed as: 

TI; =ln(_.!!.J_J tanB; (Eq. 2) 
where a is the land pixel i's upslope contributing area per contour length, which assumed 
to be equal to pixel size ( e.g., 10 or 30 m), and B is land pixel i's slope angle (Beven and 
Kirkby 1979; Beven 1995; Endreny et al. 2000; Endreny and Wood 2003). The TI is 
applicable to humid areas, much like eastern Tennessee, where water table levels 
presumably follow the same pattern as the topography, and is based on the concept that 
runoff is produced as watershed soils become saturated and storage capacity reached 
(Dunne and Leopold 1979). Thus, those areas having a high potential of saturation are 
highly likely to produce runoff. Subsequent research investigated the spatial distribution 
and temporal history of water table levels in the eastern United States and found that the 
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TI is a reasonable measure for estimating water table elevation and saturation potential in 

humid areas of Pennsylvania (Torch et al. 1993; Hornberger and Boyer 1995). 

Using elevation data from the DEMs, I generated a TI (with 10-m and 30-m 

DEMs) for BCLRW within Arc/Info© GRID©, generating a raster GIS layer that 

illustrates high to low values of pixel saturation potential and runoff likelihood. Primary 

GRID© functions used include SLOPE, FLOW DIRECTION, and FLOW ACCUMULATION. The 

flow accumulation algorithm identifies drainage networks by calculating flow direction 

and pixel accumulation on a cell-by-cell basis. It should be noted that values associated 

with the output layer from a flow accumulation routine are generic. Flow paths are 

identified by the number of pixels accumulated into one another. However, a weight 

layer can be used in lieu of simple pixel accumulation. For example, a raster layer that 

identifies levels of rainfall lost to runoff per pixel can be included in the GRID© drainage 

network computations as a weight layer such that the output pixel value identifies surface 

water volumes rather than simple pixel counts (ESRI 2004). In this research, I use a 

contour length layer, which has values equal to the DEM's resolution (10 or 30 m) as a 

weight layer in order to calculate the length of upslope contributing areas. 

Using a four-step process I constructed Tis from 10- and 30-m DEMs. Figure 7 

shows a graphic illustration of the GRID© computations and data utilized for TI 

generation, while the discussion below details each computational step. 

Step 1 - Preparation of Raster Layers 

Topographic depressions (or sinks) in the DEM (NED) were filled such that each 

pixel was not completely surrounded by pixels of higher elevation values. Again, 
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depressions in the DEM interfere with flow path extraction and must be filled, which will 

be used to determine the lengths of upslope contributing areas. 

Step 2 -Upslope Contributing Area Calculation 

I extracted a drainage network from the filled DEM using the flow direction and 

accumulation algorithms. To identify slope length pixel-by-pixel, I created a contour 

length layer, set each pixel's value equal to the pixel's resolution, and used it as a weight 

layer in the flow accumulation computation. The output layer identified accumulated 

slope length across the entire study area; hence, each pixel's upslope contributing area, 

and the numerator (a) in Equation 2. 

Step 3 -Slope Calculation 

I calculated each pixel's maximum rate of elevation change to its neighbor as 

degrees and computed the tangent of that quotient, which provided the denominator (tan 

B) in Equation 2. In preparation for Step 4, I converted all zero slope values equal to the

minimum slope value observed in BCLRW, which will avoid division by zero. 

Step 4-TI Calculation 

Finally, I divided the contributing area and slope layers generated in Steps 2 and 

3, and calculated the natural logarithm of the quotient to normalize the layer value 

distribution. Higher TI values identify those areas where saturation potential and runoff 

likelihood are high (Figure 8a). 
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a) 

Streams 
b) 

TI and BI Values 

High 

Low 

Figure 8: Topographic and buffer indices map. Mapped accross a 3 x 3 km area, the topo­
graphic index (a) identifies saturation and runoff likelihood, while the buffer 
index (b) identifies nutrient retention potential. Higher values in both cases 

indicate areas high in runoff likelihood or nutrient retention. 
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The Buffer Index (BI) 

The BI was built upon the work ofEndreny and Wood (2003) and uses a raster 

land cover layer and DEM for predicting each watershed pixel's potential for nutrient 

filtration by calculating pixel dispersal areas and relative nutrient trapping ability. The BI 

identifies overland flow dispersal areas and estimates relative values for each pixel's 

buffering likelihood using a DEM analysis that determines if each pixel's runoff actually 

enters a vegetative buffer. The BI is computed as: 

N 

LTDAi 

BI; =In
_D_A=_l __ 

tanBDAi 
(Eq. 3) 

where L ½Ai represents the dispersal area's total trapping efficiency and B DAi represents

the dispersal area's average slope. The BI computation combines DEM computed flow 

accumulation and slope with pre-determined values of nutrient trapping ability assigned 

to each land cover class. I computed Equation 3 for both 10-m and 30-m datasets (DEMs 

and land cover) in a six-step process within GRID© using much of the same algorithms 

used for the TI model with the exception of some additional processing steps. Figure 9 

illustrates a graphic model of the processing steps used for the BI model's development. 

Step 1 - Preparation Raster Layers 

In preparing the land cover layers, I calculated a trapping layer of nutrient­

reduction rates set to a fraction that represents buffering capacity and release based on the 

land cover dataset. For example, if a forest pixel traps 80% of TP carried by runoff, the 

output trapping layer will depict that pixel value as 20% ( or 0.2) of that load being 
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released. Other researchers report a 40% to 90% reduction in TP by forested field plots 5 

to 30 m in length (Uusi-Kamppa et al. 1997). Likewise, observed trapping rates for TN 

were estimated to be 60% to 97% in native grassland and forested plots 30 m in length 

(Lee et al. 2003). The raster approach to modeling land cover identifies one value for 

each pixel that is 10 or 30 m in length; hence each 30-m pixel of forest, for example, 

must represent a 900 m2 forested area (or trapping plot). Therefore, I base the selection 

of trapping percentages {Table 6) on plot size ( or resolution of the input data). Finer­

resolution data ( e.g., IPSI) were assigned lower trapping values, while broader-resolution 

data (e.g., NLCD) were assigned the higher values. I was unable to acquire any 

additional research that provided more support to the observations made by Uusi­

Kamppa et al. (1997) and Lee et al. (2003). Additional literature would make it possible 

to examine variability in nutrient retention values between different climatic and 

physiographic regimes. Also, additional literature-reported nutrient retention values 

could have been included in the sensitivity analysis, which would help to calibrate the Bl 

with nutrient retention characteristic ofBCLRW. 

The grass plots observed by Uusi-Kampp et al. (1997) and Lee et al. (2003) 

included native grass and switchgrass species. All grassland within BCLR W is classified 

by IPSI and NLCD as pasture. Of the pasture I observed during water quality surveys, all 

appeared to be active grazing land. Un-grazed/un-maintained pasture patches, which 

may function like native grass and switchgrass species in reducing nutrient loads, are 

uncharacteristic ofBCLRW because of the limited land suitable for agricultural practices 

available to farmers (Eric Henry, personal communication). 
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Table 6: Nutrient retention values by land cover class. 

/PSI NLCD 

TP TN TP TN 

Urban 1% 1% 3% 3% 

Forest 40% 40% 95% 95% 

Pasture 5% 5% 15% 15% 

Cropland 1% 1% 3% 3% 

Barren Land 5% 5% 15% 15% 
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Assuming that a minimal amount of nutrient retention occurs in pasture, I 

conservatively assigned minimal retention values (1 % and 3%) to TP and TN in pasture. 

Likewise, urban areas and barren land may contain patches of filtering vegetation ( such 

as forest within a golf course); however, the scale of the three land cover datasets is too 

coarse to depict such a detailed classification, and urban areas consist of more complex 

runoff systems ( e.g., sewer systems) that will divert runoff away from any retention 

opportunities and complicate the retention process. Therefore, I have assumed that 

forest-woody vegetation, shrub lands, and wetlands-is the only significant filtering 

land cover within the six-class scheme. Urban, cropland, and barren land cover were also 

assigned minimal retention values because no existing literature provides evidence that 

they significantly contribute to the retention ofTP and TN transported via runoff. 

In preparing the filled DEM for dispersal area delineation, I created a stream layer 

and an inverted DEM. The stream layer was calculated from the flow direction and 

accumulation algorithms and was manipulated such that all high-accumulation pixels (> 

500) were set to zero. Streams are the destination for nutrients transported via overland

flow; therefore, the final BI layer must identify all streams as zero or null. To be 

consistent with the streams used in sub-watershed delineation, I used only streams 

extracted from the 10-m DEM in both 10- and 30-m BI analysis. 

The inverted DEM was calculated by multiplying filled DEM values by -1, which 

portrayed all ridges as low-lying valleys and valley bottoms as ridge tops. This layer is 

crucial for identifying a pixel's dispersal area, and the total length of that dispersal area. 

The flow direction and accumulation routines determine the direction and accumulation 

of flow from higher to lower elevation, hence each pixel's upslope-contributing area. 
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The inverted DEM enables the same calculations to be made except in reverse, thus 

determining pixel dispersal areas. 

- Step 2 - Calculate Total Drop in Slope from Pixel to Nearest Stream

I used the slope algorithm to generate a maximum change ( or drop) in slope layer 

such that all stream-pixel values are set to zero. I then calculated flow accumulation 

using the filled DEM and slope layer as a weight layer, which generated a layer 

identifying the total ( or accumulated) drop in slope from every terrain pixel to the nearest 

stream. Stream pixels within this layer were then set to the minimum-slope value, which 

is in preparation for avoiding division by zero in Step 4. 

Step 3 - Determine Pixel Dispersal Area Length. 

In this step, I used a contour-length layer as a weight layer and inverted DEM 

within the flow accumulation algorithm to calculate each pixel's total dispersal-area 

length (or run) from each terrain pixel to the nearest stream. The contour-length layer 

assumes that contour length at each raster-pixel location is equal to the resolution (or 

length) of each pixel. As in the computation in Step 2, incorporating a weight layer of 

contour length allows the flow accumulation routine to assign each pixel a value 

indicating accumulated length from that pixel to the nearest stream. To avoid division by 

zero in Step 4, stream-pixel values within the resulting layer were set to one. 

Step 4- Compute Average Slope in Dispersal Area 

The denominator in the Equation 3 was obtained by dividing the two flow 

accumulation layers obtained from Steps 2 and 3-the total change in elevation, and the 

dispersal-area length. The streams in the subsequent layer were set to zero by identifying 

their spatial location in relation to the streams created in Step 1. In other words, all 
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stream pixels in the denominator layer that share the same spatial location as the stream 

layer were set to a value of zero, while all other pixels maintained their value. 

Step 5 - Determine Nutrient Filtration within Dispersal Area 

The trapping layer computed in Step 1 was further processed for deriving the total 

nutrient reduction within each pixel's dispersal area. A zero stream layer and trapping 

layer overlay identified all stream pixels within the trapping layer. The trapping layer 

was then included in a flow accumulation (using the inverted DEM) routine as a weight 

layer to identify an accumulated amount of trapping within each pixel dispersal zone. 

Again, this step excluded all streams, which were assigned a trapping value of zero. 

Step 6 - Determine Nutrient Filtration in Dispersal Area 

Finally, I generated the BI layer by computing the natural logarithm of the total 

nutrient filtering (numerator) and the average-slope-in-dispersal-area ( denominator) 

quotient. The natural logarithm is computed in order to collapse the spread of the BI 

distribution. Higher raster values identify the pixels with a higher likelihood of nutrient 

filtration (Figure 8b ). Typically, ridge tops within forest cover have high-BI values 

because of their large dispersal area. Overland flow associated with larger dispersal areas 

and forest cover has a longer traveling time to reach streams and thus has more 

opportunities to become trapped. 

Normalization of Topographic and Buffer Indices 

The BI and TI were used to map hydrologically sensitive areas in BCL WR. 

Because the weighted ECM models nutrient variability within sub-watersheds, TI and BI 

datasets must first be normalized such that each sub-watershed's cumulative nutrient load 
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is equal to that of its weighted nutrient load (Endreny and Wood 2003). The 

normalization is computed as: 

Tl. 
NT/. = --' 

I <l>TI 

NB/.= 
<t>BI 

I BJ. 
I 

(Eq. 4) 

where <I> indicates the median BI or TI value. The median was used rather than the mean 

because TI and BI (both 10-m and 30-m) consisted of skewed value distributions. This 

weighting scheme requires a median value from each watershed used in the analysis, 

which allows for normalized TI and BI values to override one another once placed in the 

final ECM equation. However, the normalized TI and BI distribution must be somewhat 

similar for the weighting scheme to work correctly (Endreny and Wood 2003). 

Normalized 10- and 30-m BI distributions for BCLRW included both negative 

and positive values. This is problematic because a negative BI value will result in 

negative nutrient exports and all watershed pixels, in this research, are assumed to be 

associated with a positive export. The negative BI numbers are calculated during natural 

logarithm computation. High retention values assigned to the forest land cover result in 

low nutrient release rates. During natural logarithm calculations, lower values ( e.g., < 

1.0) are computed as negative. I compensate for this problem by shifting the BI 

distribution so that all BI values are positive and similar to the TI distribution. Again, the 

weighting scheme identifies relative (pixel-by-pixel) nutrient export, allowing the 

researcher to prioritize nutrient areas and not to report accurate export amounts. 

Furthermore, negative nutrient export values could be considered as hydrologic sinks; 
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however, in this research, I assume that sinks �900 m2 are unlikely to occur in eastern 

United States regions (Mark 1988). While sinks of 100 m2 have the potential to exist in 

areas similar to BCLRW, I did not include them in the analyses because of the broad 

scale nature of ECModeling. 

Weighted Export Coefficient Model Application 

The weighted ECM analysis will evaluate each watershed pixel's terrain 

orientation, downslope trapping ability, and land cover for determining relative nutrient 

export pixel·by-pixel, generating a single raster GIS layer. The resulting NTI and NBI 

values were used in Equation 1 as: 

L
N = L[(E; * NTI; * NBI;)* A;] (Eq. 5) 

i=I 

where L is the summarized load for watershed N, E is the ECV for watershed pixel i, NTI 

and NBI are the normalized topographic and buffer indices for watershed pixel i, and A is

the area of watershed pixel i. The area of each watershed pixel remained consistent (100-

and 900- m2). While the cumulative load calculations in Equation 1 and Equation 5 are 

similar, I chose to implement two separate ECMs in this research to save computer­

processing time. TI and BI generation for large areas with multiple datasets ( e.g., 10-m 

and 30-m raster layers) at multiple watershed extents ( e.g., 4th, 5th, and 6th order 

watersheds) can be time-consuming. Analyzing cumulative loadings for the entire study 

area with Equation 1 versus Equation 5 minimizes processing time. 

Unlike the unweighted ECM, the GIS layer produced from the weighted ECM 

allows the researcher to visualize where high nutrient exports are originating within the 

78 



www.manaraa.com

watershed ( e.g., in the riparian zone or on concave hillslopes) and then begin to consider 

different management scenarios ( e.g., riparian reforestation, pasture improvement, etc.) 

for mediating the area (Figure 10). Once a particular best management practice (BMP) 

has been identified, a management team can then verify the decision with field surveys. 

By swapping land cover datasets during weighted ECM simulations, I can determine (1) 

if broader-scale-based (e.g., NLCD and 30-m NED) results are appropriate for making 

the same decisions regarding potential BMP scenarios, and (2) whether usable loading 

information can be extracted from critical areas-such riparian zone loading-compared 

to results using finer-scale data (e.g., IPSI and 10-m NED). 

I implement the weighted ECM in only three sub-watersheds that exhibit low, 

moderate, and high nutrient loading with IPSI and NLCD, which were identified by the 

unweighted ECM analysis. LULC-A VHRR was excluded from this analysis because the 

large pixel resolution (1-km) is not practical for prioritizing risk areas within sub­

watersheds. Using IPSI and NLCD, I was able to visualize the areas where nutrient flux 

was originating (i.e., in the riparian or non-riparian zone) and consider different BMP 

scenarios. I based riparian buffer widths on stream order. First- and second-order 

streams were assigned buffer widths of 50 m; whereas, third-, forth-, and fifth- order 

streams received buffer widths of 100 m. It was necessary to decrease the riparian-zone 

widths from the width suggested by USEP A (2002) because within smaller sub­

watersheds a 200-m buffer will occupy most of the total area. The sub-watershed extent 

(e.g., 4th or 5th order sub-watersheds) for this analysis was based on results from the 

unweighted ECM analysis. In Chapter IV, I further discuss these three sub-watersheds 

and results from calibration, unweighted, and weighted ECM analyses. 
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a) 

b) 

Nutrient Export 

Low High 

Figure 10: Unweighted vs. weighted ECM nutrient export map. Mapped within a 1 km
2

section ofBCLRW, the (a) unweighted ECM only accounts for land cover 
type; whereas, the (b) weighted ECM accounts for topographic orientation 
and nutrient retention. 
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CHAPTERV 

RESULTS 

This chapter presents three sets of results from: ( 1) Export Coefficient Model 

(ECM) calibration analysis, (2) unweighted ECM statistical analysis, and (3) weighted 

ECM analysis. 

Calibration Analysis: Export Coefficient Value Selection 

The calibration analysis included both unweighted and weighted ECMs. In both 

cases, the set of median total phosphorus (TP) and total nitrogen (TN) export coefficient 

values (ECV) from Table 5 yielded comparable results to observed loads in Ellejoy Creek 

(ECl) and Nails Creek (NCI) watersheds (Figure 11; Table A.5). Using median ECVs, I 

found the unweighted ECM results to be within 5% of observed loads, and weighted 

ECM results to be within ±12% of observed loads. Table A.5 illustrates absolute loading 

values produced from all ECV quartile simulations. Figure 11 indicates that both 

unweighted and weighted ECM simulations, using the median set of ECV s, slightly 

underestimated observed nutrient loads. While slightly increasing ECVs would 

compensate for this underestimation, I felt the variation between observed and simulated 

loadings was minimal and chose to use only the median set ofECVs in the BCLRW­

ECMs. 

In this analysis, I used only the IPSI land cover because this research assumes that 

IPSI (ca. 2000) is the most accurate representation of land cover in BCLRW. A 
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Figure 11: ECM calibration results. Difference between observed loadings and loadings 
calculated in the (a) unweighted ECM using median ECVs were -0.9% (TP) 
and -5.0% (TN). Likewise, difference between observed loads and loads 
produced by the (b) weighted ECM were -0.5% (TP) and-12.0% (TN). 
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preliminary calibration analysis using NLCD also suggests the median BCV s yield results 

closest to the observed loads. 

The Unweighted Export Coefficient Model Analysis 

ANOV A results indicate a significant difference (p = 0.0001 a = 0.05) between 

IPSI-, NLCD-, and LULC-AVHRR-based simulation results when modeling TP and TN 

at the 4th, 5th, or 6th order watershed mapping extent. Figures 12 and 13 illustrate that, 

while the difference between land cover simulation groups decreases as spatial extent is 

broadened, difference in nutrient loading as simulated within land cover groups increases 

with the change in watershed extent. This phenomenon is related to spatial data 

aggregation, and the modifiable aerial unit problem (MAUP) (Jelinski and Wu 1996). 

Statistically significant differences between the three groups, however, are obviously due 

to extreme variation between the LULC-AVHRR-based results and the IPSI- and NLCD­

based results. This suggests that general landscape patterns of nutrient export are 

statistically lost between 10-m or 30-m and 1-km data. 

Therefore, I conducted a second ANOV A analysis in which LULC-A VHRR­

based results were excluded. Using only IPSI- and NLCD-based results, the ANOV A 

test indicates that result groups are statistically significantly different only at the 4th order 

watershed extent {Table 7). Differences between TP and TN model results produced 

from IPSI and NLCD at the 5th and 6th order mapping extent are not statistically 

significant, which implies the 5th order mapping extent is the threshold mapping scale at 

which differences in broad- and fine-scale (e.g., IPSI and NLCD) model results are not 
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Figure 13: Difference within and between land cover-based TN simulation results. 
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86 

Table 7: Statistical differences in unweighted ECM results 

between IPSI- and NLCD-based simulations. 

4
th 

Order

5
th 

Order

6
th 

Order

TPp-Values 

0.001 • 

0.082 

0.574 

TNp-Values 

0.0001 • 

0.25 

0.331 

* Denotes statistically significant differences between groups with 95% confidence.
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apparent. Because ANOV A assumes normality within and equal variance between each 

dataset (SPSS 2001), I transformed each ECM-result dataset using the natural logarithm 

(Figures A.1 and A.2) and tested for homogeneity of variance using the Levene statistic. 

The homogeneity of variance test indicated that all data distributions consisted of 

statistically equal variances (a = 0.05).

Although modeling TP and TN at the 4th order watershed extent produces results 

from NLCD that are statistically different than results from IPSI, it is important to 

consider the difference in the prioritization of watersheds for nutrient flux that occurred 

between model simulations using NLCD and IPSI. Figures 14 to 19 illustrate differences 

in the prioritization of watersheds between 4th, 5th, and 6th order watersheds. I

categorized total watershed nutrient export into four classes, which were developed from 

natural breaks in the modeled TP- and TN-result distributions (Figures A.2 and A.3; 

Table A.6). TP and TN value distributions produced from ECM simulations vary 

considerably between land cover datasets. 

Patterns of nutrient flux are a function of land cover locations. Classification 

schemes, such as quantiles or equal intervals, assign an equal number of watersheds to 

each grouping. While this may be ideal for comparing multiple datasets, it causes 

undesirable representations of nutrient flux by associating, for example, a high rank to 

forested watersheds that have lower exports. This would contradict empirical evidence 

that has shown strong negative correlations between forested cover and nutrient flux (See 

Chapter II). On the other hand, the natural breaks classification scheme assigns breaks to 

small groups that are inherent to each dataset (ESRI 2004). Because BCLRW 4th, 5th, and

6th order watersheds vary considerably in size, I normalized the cumulative loads per
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watershed (kg/yr) by watershed area (kg/ha/yr). The four-class aggregation can be 

viewed as four degrees of prioritization. 

Overall, TP and TN simulations reveal that while the nutrient fluxes of 4th ·order

watersheds statistically differ between all three land cover dataset simulations, maps that 

prioritize watersheds for nutrient flux illustrate minimal differences between IPSI- and 

NLCD-based simulations. As watershed extent broadens to 5th and 6th order watersheds, 

differences in watershed prioritization between IPSI- and NLCD-based simulations 

become less apparent. Although the prioritization of watersheds for TN in LULC-

A VHRR-based simulations differs from those based on IPSI and NLCD (Figures 17c to 

19c ), general patterns of TN loading across the landscape are not lost. However, the 

prioritization of watersheds for TP derived from LULC-AVHRR-based simulations 

(Figures 14c to 16c) does lose general patterns of nutrient loading; therefore, I excluded

LULC-A VHRR from the correlation analysis and included only IPSI- and NLCD-based 

results, which are strongly correlated (R2 = 0.95) (Figures 20 and 21). 

Figures 22 and 23 illustrate the relationship between results from the IPSI- and 

NLCD-based simulations by mapping watersheds that showed different prioritizations 

nutrient flux. The color-coding scheme shows the degree of difference between land 

cover dataset simulations. Greatest change (red) represents a two- or three-category 

switch between IPSI- and NLCD-based model results, moderate change (beige) 

represents a one-category switch, and green represents no switch. For example, if a 

simulation using IPSI prioritizes a given watershed in the first category and the 

simulation using NLCD prioritizes that watershed in the fourth category, the correlation 

result is a three-category switch and a high degree of change. Overall, at the 4th, 5th, and

94



www.manaraa.com

a) !

0 .... 
� 

.§ 
Cl.l 

Cl.l 

e: 

�· 

b) !

' 

s:l 

.9 
� 

.§ 
Cl.l -
Cl.l 

e: 

0 

c) �-

s:l 
0 .... 
� 

]
Cl.l -
Cl.l 

e: 

0 

0 

TP Export from 
4th Order Watersheds 
(kg/yr) 

a 

a 0 

•o 

,,,il?' 
0 
0 

DO 

D 
0 

"' 

0.0 
NLCD Simulation 

TP Export from 
5th Order Watersheds 
(kg/yr) 

0 
D 

D O 

a 
0 

a � di 
a 1111

0

9,

� 

/ 
0.0 

NLCD Simulation 

TP Export from 
6th Order Watersheds 
(kg/yr) 

a a 
Dr,PJ 

pdlf 
_. 

0.0 

D 

DD 0D 

a 

a 

a 
DD 

NLCD Simulation 

0 

1,200 

a 

4,000 

a 

D 
a 

D 

7,000 

Figure 20: Correlation between IPSI- and NLCD-based TP simulations. Model results 
were from unweighted ECM simulations at the (a) 4th, (b) 5th, and (c) 6th 
order watershed extent. 

95 



www.manaraa.com

a) 

b) 

c) 

= 

·a�
=

.§ 
ti.) 

ti.) 

� 

§ _______________ __
oo· 

0 
0 

TN Export from 
4th Order Watersheds 
(kg/yr) 

0.0 
NLCD Simulation 

6,000 

§------------------,
g· 

0 
0 

TN Export from 
5th Order Watersheds 

, (kg/yr) 

. 
0.0 

o'BCb 
a 
a 

NLCD Simulation 

o· 
0 

TN Export from 
6th Order Watersheds 
(kg/yr) 0 

0 
0 

0 

D
a 

i 

a 

a a a 

a.,-e 

�· 

,0 

0.0 

NLCD Simulation 

D 

0
0 

8 

20,000 

60,000 

Figure 21: Correlation between IPSI- and NLCD-based 1N simulations. Model results 
were from unweighted ECM simulations at the (a) 4th, (b) 5th, and (c) 6th 
order watershed extent. 

96 



www.manaraa.com

a)
4
th

 O
rd

e
r

-
�

b
)

5
th

 O
rd

e
r

t
c)

6
th

 O
rd

e
r

0
 

5
 

1
0
 

2
0
 

Ki
lo

m
e
te

rs
 

l 
I
 

I
 

I
 

I
 

I
 

I
 

I
 

I 

W
a
te

rs
h

ed
 Pr

io
ri

tiz
a
ti

o
n

 C
h

a
n

g
e 

IP
S

I 
2
 

3
 

4
 

0
 

1,__
_

-+-
_

 _,_
 _

_
 

U
 

2
 

�
 

3 4
 

F
ig

u
re

 2
2
: 
C

o
rr

el
at

io
n
 m

ap
 o

f 
w

at
er

sh
ed

 p
ri

o
ri

ti
za

ti
o
n
 fo

r 
T

P
 e

x
p
o
rt

. T
h
e 

4
x
4
 

b
o
x
 r

ep
re

se
n
ts

 a
 c

at
eg

o
ri

ca
l 

ag
gr

eg
at

io
n
 fr

o
m

 F
ig

u
re

s 
14

 t
o
 1

6 

\0
 

-...l
 

o
f 

T
P
 r

is
k
. R

ed
 i
n
d
ic

at
es

 h
ig

h
 d

egr
ee

s 
o
f 

ch
an

g
e 

(2
-

o
r 

3
-c

at
eg

o
ry

 
sh

ift
),

 b
ei

g
e 

in
d
ic

at
es

 m
o
d
er

at
e 

d
egr

ee
s 

o
f 

ch
an

g
e 

(I
-c

at
eg

o
ry

 
sh

ift
),

 a
n
d
 g

re
en

 i
n
d
ic

at
es

 n
o
 c

h
an

g
e.

 



www.manaraa.com

'°
 

00
 

a
)

4
th

 O
rd

e
r

b
)

5
th

 O
rd

e
r

t
c)

6
th

 O
rd

e
r

O
 

5
 

1 
O
 

2
0
 

Ki
lo

m
e
te

rs
 

I 
I
 

I
 

I
 

I
 

I
 

I
 

I
 

I 

W
at

er
sh

ed
 P

ri
or

it
iz

at
io

n
 C

h
a
n
g
e 

IP
S
I 

2
 

3
 

4
 

---

0
 

11--
-

-i--
-

--f"'"
-

-
u

2 
�

 
3 4 

F
ig

u
re

 2
3:

 C
o
rr

el
at

io
n
 m

ap
 o

f 
w

at
er

sh
ed

 p
ri

o
ri

tiz
at

io
n
 fo

r 
T

N
 e

x
p
o
rt

. T
h
e 

4x
4
 

b
o
x 

re
p
re

se
nt

s 
a 

ca
te

g
o
ri

ca
l 
ag

gr
eg

at
io

n
 fr

o
m

 F
ig

u
re

s 
17

 t
o 

19
 

of
 T

N
 r

is
k
. 
R

ed
 i
n
d
ic

at
es

 h
ig

h 
d
egr

ee
s 

o
f 

ch
an

g
e 

(2
-

o
r 

3-
ca

te
g
o
ry

 
sh

ift
),

 b
ei

g
e 

in
d
ic

at
es

 m
o
d
er

at
e 

d
egr

ee
s 

o
f 

ch
an

g
e 

(I
-c

at
eg

o
ry

 
sh

ift
),

 an
d
 g

re
en

 i
n
d
ic

at
es

 n
o
 c

h
an

g
e.

 



www.manaraa.com

6th order extents, differences in prioritization of watersheds for both TP and TN flux 

occur primarily in mixed land cover watersheds. Watersheds that include multiple types 

of land cover exhibit more variation in land cover identification and therefore more 

variation (within the dataset) in nutrient loadings. 

Fourth-order watersheds exhibit the most difference in TP and TN watershed 

prioritization between IPSI- and NLCD-based simulations (Figures 22a and 23a). 

Roughly 26% of the 4th order watersheds modeled for TP changed prioritization category 

between the simulations, while 19% changed during TN model simulations. However, 

differences in prioritization classes for TN were only moderate, and differences in 

prioritization classes for TP were primarily moderate, with some areas of extreme change 

that occupied only 3% of all watersheds and were confined to areas averaging 1-km2
• 

At the 5th order extent, the degree and frequency of prioritization difference 

decreased (Figures 22b and 23b ), which indicates that as the spatial mapping scale 

increases, the degree and frequency of model differences simulated from IPSI and NLCD 

become less apparent. TP and TN both exhibit moderate degrees of change at the 5th 

order extent, in which 22% (TP) to 14% (TN) of all watersheds switched prioritization 

ranking between model simulations. 

Correlations between 6th order watershed simulations reveal a continued decrease 

in the frequency of TN prioritization difference between !PSI-based and NLCD-based 

simulations (Figure 23c ). Simulated TN export risks from 6th order watersheds differ in 

only 4% of all watersheds, which indicates that as spatial mapping scale increases the 

differences in the prioritization of watersheds for TN flux become less apparent between 

IPSI- and NLCD-based simulations. However, simulated TP export risks differ in 
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roughly 29% of all 6th order watersheds. It should be noted that most of 6th order TP 

change occurs along the Blount County border, which is not a natural hydrologic 

boundary and includes portions of drainage areas that extend beyond the study area. The 

difference in total watershed area from one 6th order watershed to the next is problematic 

for comparing the change in watershed prioritization categories between land cover 

dataset simulations and will be discussed further in Chapter VI. 

The Weighted Export Coefficient Model Analysis 

Unweighted ECM results suggest that the 5th order watershed extent is the 

threshold at which IPSI- and NLCD-based model results are statistically similar (Table 

7). For modeling nutrient export within watersheds, I selected three 5 th order sub­

watersheds (Figure 24) as study sites because they (1) exemplify low, moderate, and high 

nutrient export areas, (2) occupy similar nutrient (TP and TN) load rankings between 

IPSI and NLCD-based simulations (Figures 14 and 19), and (3) do not change watershed 

prioritization between IPSI- and NLCD-based simulations (Figures 22 and 23). Figure 

24 shows that each sub-watershed includes varying degrees of land cover and terrain; the 

low-risk watershed incorporates primarily forest cover, while moderate- and high-risk 

watersheds include a mix of primarily agricultural and urban cover. 

Weighted ECM simulations within 5th order watersheds using both 10-m and 30-

m data indicate that the greatest risk of nutrient loading occurs in areas characterized by 

gently rolling slopes, large upslope-contributing areas, and dispersal areas free of forest 

cover. Cornfields, grazing land, and urban land situated on concave landforms with few 
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Figure 24: The weighted ECM study area. Selected watersheds shown with land cover 
composition. Watershed selection was based on overall prioritization levels 
of (a) high, (b) moderate, and ( c) low risk. 
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vegetative buffers have high runoff potential (high TI values) and low nutrient trapping 

likelihood (low BI values) (Endreny and Wood 2003), thus assigning a more significant 

weight to the ECV. Two sets of data were used in this analysis: (1) ISPI land cover and 

10-m National Elevation Data (NED) (fine scale) and (2) NLCD and 30-m NED (broad

scale). I identify high nutrient-risk areas by extracting pixel ( or loading) values, within 

each watershed's loading distribution, that are greater than the 25-percentile pixel value. 

TP- and TN-loading distributions within all three watersheds are highly variable between 

datasets and present negatively skewed distributions; hence, I could not choose a single 

pixel value as the high loading threshold for all three watersheds. Based on the natural 

breaks in each watershed's loading distribution, I noted within each distribution where 

pixel values began to exhibit high annual levels of TP and TN export compared to the 

lower distribution values. Within all three distributions the 25 percentile value (Table 8) 

provided a distinct break in the data. I used this break as a threshold and considered 

those nutrient values ( or pixels) greater than the 25-percentile value to be high in export. 

Several differences are apparent between the 10-m and 30-m weighted ECM 

simulations. I found that, in all three watersheds, weighted ECM simulations using 10-m 

data identify areas outside the riparian zone-which ranges from 100 m to 50 m in width 

depending on stream order-as the primary origins of nutrient flux. Conversely, 

simulations using 30-m data identify only high- and moderate-risk watersheds as having 

greater origins of nutrient flux outside the riparian zone (Table 9). When considering 

absolute nutrient fluxes, I found that weighted ECM simulations using 30-m data 

simulation does not compare well to the 10-m simulations. Within each watershed's 

riparian zones, simulations using 30-m data capture only 9% (TP) and 23% (TN) of the 
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Table 8: Twenty-fifth percentile nutrient loading values. 

TP (kg/pixel) TN (kg/pixel) 

Watershed IPSI NLCD IPSI NLCD 

Low Risk 0.05 1.18 0.32 3.79 

Moderate Risk 0.06 0.31 0.30 1.81 

High Risk 0.05 0.29 0.29 1.81 
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Table 9: Percentage of each risk-watershed's total area associated with a high nutrient 
loading. 

a) TP Export

Low-Risk Mode rate-Risk High-Risk 

IPSI NLCD IPSI NLCD IPSI NLCD 

(%) (%) (%) (%) (%) (%) 

Riparian Zone 0.45 0.16 0.47 0.47 1.80 0.97 

All Other Areas 0.93 0.07 1.20 1.43 5.54 7.68 

b) TN Export

Low-Risk Mode rate-Risk High-Risk 

IPSI NLCD IPSI NLCD IPSI NLCD 

(%) (%) (%) (%) (%) (%) 

Riparian Zone 0.38 0.09 0.46 1.18 1.43 0.88 

All Other Areas 0.40 0.03 2.56 1.99 4.00 4.48 
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total nutrient-risk-area load identified by simulations using fine-scale data. Similarly, 

throughout each watershed's entire area, 30-m data simulations capture only 9% (TP) and 

11 % (TN) of the nutrient-risk load identified by fine-scale data. 

However, visual comparisons between 10-m and 30-m data simulations compare 

fairly well for prioritizing nutrient areas in the lowlands of each watershed (Figures 25 

and 26). Figures 25 and 26 illustrate that simulations with 30-m data are less dispersed 

and do not capture smaller patches of nutrient risk in upland regions as do those modeled 

with 10-m data. Moreover, the low-risk watershed is the most problematic for 30-m data 

simulation (Figures 25c and 26c ). Within the low-risk watershed, simulations using 30-m 

data do not capture urban and agricultural areas, which are potential producers of 

excessive nutrient flux, situated in rugged, upland terrain. Management teams using a 

nutrient-risk map created from 30-m ECM simulations ( e.g., Figure 25c) would be 

directed to low-lying riparian zones as primary sources of nutrient risk, not considering 

the TP-export risk areas associated with upland portions of the watershed that are only 

identified simulations using 10-m data. Therefore, a management-team could 

presumably consider a different best management practice (BMP) if the decision-making 

process relied on 30-m ECM results. However, within moderate- and high-risk 

watersheds-which include low-lying terrain and mixed land cover types-differences in 

nutrient-area prioritization become less apparent and general patterns of nutrient flux are 

similar between 10-m and 30-m simulations (Figure 25a/b and 26a/b ). 

Watershed management implications from the analysis results presented are 

critical when considering the different types of data available for GIS/hydrologic 
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modeling efforts. Chapter VI discusses important implications of the results obtained and 

limitations encountered in this research. 
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Scale and Data 

CHAPTER VI 

DISCUSSION AND CONCLUSION 

Research Implications 

The Blount County and Little River Watershed (BCLRW) unweighted export 

coefficient model (ECM) analysis supports the hypothesis that broad-scale land cover 

data ( e.g., 30-m NLCD) are appropriate for spatial prioritization of nutrient-risk areas at 

the county-mapping scale. Findings from this research strongly suggest broad-scale data, 

such as NLCD (30-m), produce model results that can be used in decision making­

processes. On the other hand, global-scale data, such as LULC-A VHRR (1-km), as 

expected, produce model results that do not capture general patterns ( compared to NLCD 

and IPSI) of nutrient-risk at the county-mapping scale. Using freely available NLCD 

within a GIS-based ECM in study areas similar (terrain, climate, hydrology, etc.) to 

BCLRW, management teams can confidently prioritize sub-watersheds for remediation, 

and not incur the expenses associated with developing costly, fine-scale ( e.g., 10-m IPSI) 

data. 

This research suggests the 5th order watershed extent is the threshold at which 

broad-scale data produce model results that are statistically (a = 0.05) similar to results 

obtained from fine-scale (IPSI 10-m) simulations (Table 7); this will assist watershed 

managers in determining a minimal-mapping extent for modeling nutrient export with 

broad-scale data. Although modeling smaller watersheds (e.g.,< 4th order) with NLCD is 
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not statistically appropriate, watershed prioritization differences between NLCD- and 

IPSI-based simulations (Figures 22 and 23) are moderate and apparent in only 22% (total 

phosphorus) to 19% (total nitrogen) of all 4th order watersheds. Fourth-order watersheds 

that were modeled for total nitrogen (TN) did not contain any extremely different 

prioritizations (those areas that exhibit a two- or three-category switch) between land 

cover simulations. Conversely, in 3% of the 4th order watersheds modeled for total 

phosphorus (TP), prioritization changes between simulations were great. While 3% is not 

an alarming amount, it should be noted the 4th order watersheds that exhibited great 

difference in prioritization for TP flux are relatively small (in area) compared to other 4th 

order watersheds (Figures 6), and small-area watershed delineation within GRID© is 

susceptible to erroneous stream ordering or flow path extraction. Prior to the analysis, I 

examined the stream network within these watersheds and found streams to be properly 

ordered; however, whether or not errors exist within the DEM is unknown. Systematic 

errors, although limited by NED (See Chapter III), may interrupt polygon construction 

during the watershed delineation calculations, creating smaller, unwanted polygons. 

Findings from the unweighted ECM analysis reveal patterns of spatial data 

aggregation that could lead a researcher or watershed manager to different conclusions 

when modeling water quality at broad scales as opposed to fine scales. For example, 

Figures 12 and 13 show variation within each set ofland cover-based nutrient loading 

results at the 4
th , 5th , and 6th order watershed mapping extents. The box plots associated 

with each set of model results suggest that as watershed extent increases, for example, 

from 4th order (Figure 12a) to 6th order (Figure 12c), the variation within each set of 

simulated loadings also increases. This spatial phenomenon is characteristic of the 
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modifiable areal unit problem (MAUP), which is related to scale and which suggests that 

with each combination of similar areal data aggregated into several sets of larger areal 

units, different conclusions may be made (Jelinski and Wu 1996). For example, consider 

modeling watershed-cumulative-nutrient loadings for 6th order watersheds with the same 

nutrient export data used for 4th order watersheds: Model results at the 6th order extent 

will produce more varying nutrient loadings than those at 4
th 

order extents because they 

cover a larger areal unit and include a variety of landscape variables ( e.g., land cover) 

from one watershed to the next. On the other hand, 4th 
order watersheds cover smaller 

areal units and, presumably, do not include such a variety of landscape variables; 

therefore, their simulated values will not vary as much as the 6th order results. Watershed 

managers should consider the degrees of nutrient variation observed within each 4th and 

6th order watershed simulation (Figures 12 and 13) because using these two areal units 

may lead to different overall conclusions of water quality health. Jelinski and Wu {1996) 

summarize different statistical and non-statistical methods for dealing with MAUP into 

four approaches: the "basic entity approach," "optimal zoning approach," "sensitivity 

analysis approach," and "visualization approach." 

Correlation results presented in Figures 22 and 23 exhibited minor changes in the 

prioritization of watersheds for nutrient flux between IPSI- and NLCD-based unweighted 

ECM simulations. Correlations between these land cover datasets at broader extents 

( e.g., 8th order) across region-sized areas will presumably result in even less prioritization 

change, suggesting that fine-scale data development for a regional area would be 

unnecessary. Additionally, LULC-A VHRR-based model results do not reveal the same 

patterns of nutrient export as NLCD- and !PSI-based results. However, I expect that, at 
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the regional extent, unweighted ECM runs with LULC-AVHRR will better correlate to 

NLCD- and !PSI-based results, producing nutrient loading results that are more usable 

for decision-making processes. The scope of this research does not include regional 

analyses of LULC-A VHRR. 

Differences in Nutrient Between Sub-Watersheds 

Differences in the prioritization of watersheds for nutrient flux between IPSI- and 

NLCD-based unweighted ECM simulations (Figures 22 and 23) occurred primarily in 

mixed watersheds. Therefore, managers must consider which areas they are most 

interested in; if targeted watersheds incorporate mostly urban areas, for example, then 

using NLCD in simulations at the 4th order extent are appropriate. However, if the 

primary areas of concern are mixed land cover watersheds, then unweighted ECModeling 

with NLCD may produce undesirable results-those that exhibit the greatest changes 

(two- or three-category switch) in watershed prioritization compared to watershed 

prioritization produced from fine-scale land cover. 

Change in risk categories from TP and TN simulations support the theory that as 

spatial scale broadens, fine-scale entities still exist but are not apparent (Allen et al. 

1987). Model results reveal a decreasing trend in prioritization change as the spatial 

extent increases (Figures 22 and 23), which parallels this concept. For example, I 

calculated the percentage of watersheds from Figures 22 and 23 that changed 

prioritization class between IPSI- and NLCD-based unweighted ECM simulations. In the 

case of TN-export prioritization, the percent of watersheds that changed prioritization 

class between land cover simulations decreased from 19% (4th order) to 4% (6th order). 
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This suggests that as spatial extent is broadened, differences in fine- and broad-scale 

model results become less apparent. 

However, in the case of TP-export prioritization, this pattern was not observed; 

the percent of watersheds that changed prioritization category decreased from 26% (4th

order) to 22% (5 th order), but, at the 6th order extent, the percentage increased to 29%. 

One reason is that most 6th order watershed prioritization (for TP) change occurred along 

the Blount County border, which is not a natural hydrologic boundary. I had to clip sub­

watersheds that extended beyond the Blount County boundary (See Chapter III), leaving 

small, erroneous watersheds. The drastic difference in total area between these erroneous 

watersheds and fully developed 6th order watersheds can be problematic for determining 

changes between model simulations. For example, small erroneous watersheds(< 5 krri2) 

are assigned cumulative-nutrient exports based on the number and type of underlying 

land cover pixels. Within smaller areas, 30-m land cover datasets will contain a lower 

pixel count and a lower diversity in land cover type. Finer-resolution (10-m) land cover 

datasets will contain higher pixel counts and may include more diversity in the land cover 

type, leading to differences in calculated nutrient loadings. In finer mapping extents, 

such as 4th order watersheds, erroneous watersheds are still apparent; however, fully 

developed 4th order watersheds are small, and differences between erroneous and fully 

developed watersheds are moderate. If all watersheds were fully developed, I would 

expect to see the percent of prioritization class change between IPSI- and NLCD-based 

simulations decrease as spatial extent increases-similar to the pattern observed in the 

TN prioritization change. 
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Differences in Nutrient Loading Within Sub-Watersheds 

Broad-scale data used in the weighted ECM analysis included NLCD and the 30-

m Nation Elevation Dataset (NED), whereas fine-scale data included ISPI and 10-m 

NED. In general, weighted ECM runs (within low-, moderate-, and high-risk 5th order 

watersheds) using 30-m and 10-m datasets show high nutrient originating areas to be 

associated with agricultural/urban cover situated on concave landscapes outside the 

riparian zone (Table 9). It should be noted that temporal differences exist between IPSI 

(ca 2000) and NLCD (ca 1992). The low-risk watershed incorporates primarily dense 

forest cover with few patches of agriculture and urban cover (Figure 24). Moving from 

low to high nutrient-risk watersheds, urban areas become the dominant land cover. 

Between 1992 and 2000, total population in Blount County increased 23% (U.S. Census 

2000); because low-risk watersheds include primarily forest, small amounts of land cover 

change would have occurred during the intervening years. However, watersheds with 

mixed urban and agricultural land experienced the most change due to increasing urban 

growth and decreasing agricultural operations (USDA 1997), thus changing the 

conditions of nutrient loading. 

Within all three watersheds, quantitative comparisons between absolute nutrient 

loadings of all high-risk areas identified by 10-m and 30-m based simulations are 

extremely different. Only 9% {TP) to 11 % of the high-risk loadings modeled by 10-m 

data were captured by the broad-scale data. Moreover, within the riparian zones of each 

watershed, 30-m data simulations only captured 9% (TP) to 23% (TN) of the absolute 

loadings identified by fine-scale data. However, visual comparisons of nutrient risk 

(rather than absolute counts) (Figures 25 and 26) show that general patterns of 

114 



www.manaraa.com

prioritization are maintained between 10-m and 30-m data simulations in gently-rolling, 

lowland terrain. Again, the ECM is a scoping model, which is intended for nutrient 

prioritization due to the high amount of uncertainty associated with export coefficient 

values (ECV) rather than absolute nutrient-load reports (Reckhow et al. 1980; Endreny 

and Wood 2003). 

It should be noted that modeling with 30-m data in the low-risk watershed creates 

the most problems for capturing the similar patterns of nutrient prioritization produced by 

10-m datasets. One reason is that BCLRW's low-risk watersheds incorporate rugged

terrain with many concave and convex landforms (Figure 24c). Broad-scale NED (30-

m)-included in TI and BI computations-do not contain the level of detail ( compared to 

10-m NED) necessary for capturing fine-scale hydrologic processes, such as upland flow

paths. TI and BI computations rely on a flow direction algorithm that uses the D-8 

method (or steepest decent) for determining flow pathways (O'Callaghan and Mark 1984; 

ESRI 2004). 

In this research, I use flow direction and accumulation algorithms for ( a) stream 

extraction, and (b) determining biophysical processes within pixel upslope-contributing 

and downslope-dispersal areas ( explained in Chapter IV). In the TI and BI computations, 

the streams layer was used to identify areas within the watersheds that do not contribute 

to nutrient flux. I used only streams extracted from the 10-m NED in both the fine- and 

broad-scale computations for TI and BI to keep consistency between ordered streams and 

delineated watersheds. However, when determining pixel contributing and dispersal 

areas, I use the NED that corresponds with the fine- (10-m) or broad-scale (30-m) dataset. 

In other words, although I used the flow direction/accumulation algorithm to extract 
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streams from only the 10-m NED, I computed pixel contributing and dispersal areas 

(used in TI and BI computations) with 10- and 30-m NED, which had an effect on final 

nutrient export computations. Conversely, moderate- and high-risk watershed terrain 

includes gently-rolling slopes and less detail in concave and convex landforms; hence, 

less detail is needed for weighted nutrient modeling. 

Because elevation data are a primary driving factor in the weighted ECM, 

integrating the 10-m NED and NLCD within the model could, presumably, produce 

model results closer to those produced with IPSI and the 10-m NED in rugged-terrain 

watersheds. For instance, one could resample NLCD (30-m) to a 10-m raster layer, and 

include the re-sampled NLCD and Tl/Bl created with the 10-m NED within the overall 

ECM. This alternative weighted ECM would produce results that compared better to the 

IPSI/10-m NED-based model (used above) because the 10-m NED would identify 

topographic characteristics ( e.g., concave and convex landforms) with more detail. The 

scope of this research did not include an additional weighted analysis to test this scenario. 

Overall, simulations using 30-m data capture the areas prioritized for remediation 

by simulations using 10-m data and suggest similar BMP consideration. However, as 

spatial extent is constricted to detailed areas of the watershed, such as the riparian zone, 

differences in model results become more apparent and may warrant different 

management strategies. For example, Figure 27a shows that model runs using both 10-m 

and 30-m datasets identify a lowland area (cropland patch) as a primary area ofTP 

export, which could be mediated with riparian reconstruction ( e.g., streamline fencing, 

livestock crossings, reforestation, etc.). The type of riparian BMP would depend on the 

situation and can only be confirmed by field verification. However, as the spatial scale 
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Figure 27: Detailed map of high TP fluxes produced from 10-m and 30-m data-based 
simulations. At (a) large extents differences are less apparent in lower 
stream reaches; whereas, (b) smaller extents reveal more differences 
between TP simulations. 
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becomes finer (Figure 27b ), the stream reach that requires riparian reconstruction 

becomes less apparent in simulations based on 30-m data. Moreover, the 10-m data 

simulations also identify different areas within the cropland patch (upland from the 

stream) as potential remediation areas; whereas, 30-m data simulations do not recognize 

any upland cropland areas. Hence, the watershed manager must consider the degree of 

detail he/she is concerned with achieving. 

Since a high level of uncertainty exists in ECModeling and model results should 

only be used for prioritization, field verification is crucial (Beaulac and Reckhow 1982; 

J ohnes et al. 1996; Winter and Duthie 2000). 

Model Limitations 

General Limitations 

In general, an important limitation of the ECModeling approach is the inability to 

predict in real-time; variations in available nutrient transport and uptake mechanisms 

over the annual cycle are not captured by the model (Johnes 1996; Winter and Duthie 

2000). While the weighted ECM captures the spatial variation of nutrient export within 

the watershed, it does not consider detailed biophysical mechanisms, such as organic 

absorption, that alter nutrient concentrations once in the stream and affect exports from 

downstream watersheds. However, the broad-scale nature of ECModeling, discussed in 

Chapter II, suggests that detailed biophysical processes are less important at broad-scales 

(e.g., county- or state-sized regions) and that including these variables will make 

modeling efforts extremely complex (Meentemeyer 1989). 
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A further general limitation of the ECModeling approach is that literature-derived 

ECV s cannot be fully verified for the entire study area without extensive experimental 

fieldwork (Johnes 1996; Winter and Duthie 2000). The ECM extrapolates plot-sized 

empirical data to remote areas of the basin. As variation in the hydrologic, topographic, 

edaphic, and biological conditions between these areas increases, uncertainty also 

increases. Although model calibration attempts to minimize uncertainty surrounding 

literature-derived ECVs, full verification is still lacking. For example, the BCLRW-ECM 

was calibrated successfully using median ECV s derived from the distribution of literature 

reported ECVs (Table 5; Table A.4). This, however, does not suggest that each ECV 

associated with a given land cover type is an accurate nutrient export estimation for that 

land cover. Calibration was based on the ECM's performance for simulating total basin 

load and does not consider the proportional share of export from a specific land area 

within a total load estimate. Consider a scenario of implementing an ECM in which the 

ECV s underestimate TP in simulating forest loads and overestimate TP in simulating 

pasture loads. This scenario would allow individual exports from two land covers to 

offset one another and still portray the simulated total load to within ±0.5% of observed 

loads. In other words, while the cumulative-basin load may be accurate {±0.5%), the 

exact export from each land cover type remains uncertain. 

The multiple regression approach (McFarland and Huack 2001) attempts to 

further minimize uncertainty and can verify ECV s derived from the literature by 

associating in-stream water quality measurements taken across the basin with 

surrounding land cover, building ECV s that are more indicative of the local region. In 

this research, the BCLR W multiple regression analysis was unsuccessful due to reasons 
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discussed in Chapter N, and could not be used to verify the set of median ECV s that I 

selected for weighted and unweighted ECM analysis. 

BCLRW-ECMs Limitations 

The BCLRW-ECMs include several specific limitations. An important one is that 

calibration used water quality data for Ellejoy and Nails creeks that were only available 

for a six-month sampling period (June to November 2003) and did not include storm 

events. A more extensive water quality survey (e.g., 2-4 year period) that included storm 

events would better represent annual nutrient concentrations. Moreover, sampling was 

completed for a TMDL report, which will be submitted by TDEC; therefore, site 

selection and sampling schedule were decided by TDEC; a more spatially extensive water 

quality survey would better represent nutrient export across the study area. Because 

BCLRW crosses hydrologic boundaries, the calibration could not be implemented for the 

entire area, but could be implemented for the Little River watershed, which covers 

roughly 50% ofBCLRW. Previous sampling conducted by TDEC (1998) did include 

locations along the Little River, but a single sample was not taken at the mouth of the 

watershed where a cumulative-basin load could have been captured. Furthermore, TDEC 

data collection was not complete ( e.g., missing flow data) and did not include continuous 

month-to-month sampling; several winter and fall months were not represented in the 

samples. 

Another calibration limitation was the lack of internal BCLR W data that could be 

used to verify calibration results. I selected ECV s from empirical studies that had climate 

regimes and soil characteristics similar to those of BCLRW and aggregated their 
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distributions into quartiles. However, each model run during the calibration analysis used 

an entire set of quartile ECVs (shown in Table 5) and did not randomize the ECVs within 

each set, mixing a 25% ECV of forest with a 75% ECV of pasture, for example. The lack 

of internal BCLRW data prevented me from conducting a randomized sensitivity analysis 

because there would have been no way to verify sensitivity results. For example, a 

randomized calibration analysis could potentially suggest a maximum quartile ECV for 

pasture and a 25% ECV for cropland. I would have no way to verify these results 

without specific fertilizer application (type and amount), livestock waste removal, or 

septic loading data. 

Although no detailed internal BCLRW data are available, I was able to gather 

general information concerning BCLR W agriculture practices and land use. Overall, 

crop production and livestock operations are thought to be the primary contributors to 

excessive nutrient loading in BCLRW, with cropland export the higher of the two (Eric 

Henry, personal communication). 

Croplands, which include com, moderate amounts of soybeans, and limited 

amounts of tobacco, rely the most on nitrogen and phosphorus based fertilizer 

applications (Eric Henry, personal communication). Most cropland operations till during 

winter months, a practice that increases nutrient loading because of the lack of plants to 

prevent erosion and nutrient export (Beaulac and Reckhow 1982). On the other hand, 

pasture land in BCLR W is devoted to primarily cattle and dairy livestock operations that 

use continuous grazing practices. While rotational grazing is preferred for reducing 

nutrient exports (Beaulac and Reckhow 1982), the small patch farming distribution 

within BCLRW prevents this practice. Onsite waste storage facilities exist on some dairy 
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farms; however, most livestock operations do not incorporate on-site waste disposal. 

Although BCLRW livestock operations are environmentally undesirable and are thought 

to be a major determinate of stream quality, Blount County Soil Conservation District 

officials still associate higher nutrient loads with cropland (Eric Henry, personal 

communication). Such expert opinions confirm that cropland should be assigned higher 

ECV s than pasture, as is apparent in the set of median ECV s (Table 5); however, 

determining the sensitivity of ECV s would require detailed data that could only be 

acquired through extensive field experiments and questionnaires. 

In addition to these limitations, the ECMs used in this research incorporate land 

cover, elevation, and buffer capacity variables, but do not include additional hydrologic 

variables that provide a more realistic representation of absolute loading in support of 

nutrient prioritization. Equations 1 and 5 could be calibrated with additional variables, 

including atmospheric deposition rates, soil type, septic loads, precipitation lost to runoff, 

livestock waster storage, and fertilizer applications. Examples of ECMs containing such 

additional variables can be found in Johnes (1996), Winter and Duthie (2000), and 

Endreny and Wood (2003). Once again, the lack of internal BCLRW data (e.g., fertilizer 

application, septic loads, and detailed soil characteristics) prevented me from including 

additional variables into these modeling efforts. For example, extensive soil data would 

have allowed me to verify runoff potential calculated by the TL Moreover, Reckhow et 

al. (1980) offer septic-related nutrient ECVs for rural households (e.g., kg/capita). 

However, advancements in sewage disposal technology (e.g., septic systems) since 1980 

create high levels of uncertainty in model results; thus, I did not include rural household 
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nutrient loads into the ECMs. Including these data would require an extensive survey of 

rural populations within BCLRW. 

Application of BCLRW-ECMs to Other Regions 

The ECMs presented in this research were developed and calibrated for areas 

similar to eastern Tennessee. While ECModeling relies on simplicity so that it can be 

distributed as a generic model, researchers should use caution when applying the models 

to other regions. Selection of literature-reported ECV s is critical for determining local 

nutrient export and should be accomplished with a calibration procedure (Beven 1993). 

Calibration can be done with observed in-stream nutrient concentrations or 

extensive field experiments; if these data are not available, a simple examination of local 

climate, soil, and land use management will provide some model calibration. Caution 

should also be used when modeling different nutrients. By selecting TP and TN, the 

researcher must consider more variables-more nutrient source types, more 

transformation processes, more pathways, and more sinks-that affect the fate and 

transport of two nutrients rather than only one. The highly variable fate and transport of 

TN makes it difficult to comprehensively model absolute exports levels (Endreny and 

Wood 2003). In this research, however, I use TP and TN simulation results for nutrient 

prioritization at different mapping scales and between different geospatial-data scales; 

absolute nutrient export amounts were not reported. 

The unweighted ECM is the more versatile of the two models, incorporating only 

land cover type, area measurements, and ECV s in the computation; thus, it can be applied 

in more regions compared to the weighted ECM. USEP A (2001 b) distributes PLO AD, 
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which is a version of the unweighted ECM bundled within the multi-facetted BASINS 

architecture. PLOAD exploits the visualization power explicit to GIS applications for 

providing a graphical front-end to spreadsheet ECModeling. One limitation of PLO AD 

is its inability to model in raster, which is essential for certain broad-scale land cover data 

(e.g., NLCD). Vectorizing raster-based land cover data creates undesirably large datasets 

that will limit PLOAD's broad-scale modeling ability due to considerable amounts of 

computational payload. However, PLOAD has predefined parameters and is easy to 

implement, whereas raster-based GIS does not have predefined parameters for 

ECModeling and is less intuitive and more time-consuming to implement. Hence, the 

researcher must consider the size of his/her study area, and the time available for 

modeling in selecting raster- or vector-based ECModeling. 

It should be noted that while USEPA (2001b) advertises PLOAD's ability to 

model several different water quality constituents-for example, Dissolved Oxygen 

(DO), Total Organic Content (TOC), Biochemical Oxygen Demand (BOD), Fecal 

Coliform, and E. Coli-most empirical studies have only included TP and TN in 

modeling efforts (Reckhow et al. 1980; Frink 1991; Soranno et al. 1996; Johnes 1996; 

Mattikalli and Richards 1996; Winter and Duthie 2000; Wickham and Wade 2002; 

Endreny and Wood 2003). I have not found existing literature that discourages modeling 

additional water quality constituents with ECMs; however, calibration will be difficult 

because the limited sources in the literature for other pollutant ECV s. 

Compared to the unweighted ECM, the weighted ECM is limited in its 

applicability in other regions. Weighted ECMs use a topographic index (TI) (Beven and 

Kirkby 1979) to model the runoff-producing potential of specific watershed areas, which 
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is not applicable for all climatic regimes. The TI is based on the theory that as watershed 

areas become saturated, their soil's water storage capacity decreases, which will 

ultimately result in overland flow (or runoff). Studies conducted by Torch et al. (1993) 

support this theory for humid areas in the eastern United States, where water table levels 

follow the topography of the landscape; however, in contrasting climate regimes this 

theory is not valid. Moreover, the weighted ECM does not support vector data formats 

and can only be accomplished through raster-based GIS modeling. Hydrologic 

algorithms performed on a DEM are simply not possible for a vector elevation model. 

Future Research 

The purpose of this research was to determine whether broad-scale data (e.g., 30-

m resolution) produce reliable water quality modeling results compared to fine-scale data 

( e.g., 10-m resolution) for making remediation decisions. Researchers and watershed 

managers can use this information in determining geographic scales a priori in future 

modeling projects. Knowledge that, for example, export coefficient modeling of 5th order 

watersheds for nutrient export based on NLCD produces statistically similar results to 

modeling based on more detailed, fine-scale data will assist watershed managers in 

selecting the appropriate data for their modeling needs. It should be noted that my 

findings in this research are empirical and not based on existing theory. Hence, my 

findings may not be supported in other regions of the United States or beyond. For 

example, in different regions, the average size of a 5 th or 6th order stream contributing 

areas may be different from those computed in BCLRW. Different size stream 
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contributing areas could be caused by different topographic characteristics ( compared to 

BCLR W) or the resolution of the input DEM (i.e., 10 m vs. 30 m), which presumably 

will affect final results when comparing broad- and fine-scale data within an unweighted 

or weighted ECM. 

Findings presented in this thesis are only one step in examining geographic scale 

in hydrologic modeling with broad- versus fine-scale data at the county-mapping scale. 

Future research could expand the unweighted ECM analysis study area to, for example, 

8-digit HUCs across the southeastern United States. A larger study area would allow one

to examine differences in broad- and global-scale datasets ( e.g., NLCD and LULC-

A VHRR) and determine whether or not similar patterns (to this research) of statistical 

difference and change in watershed prioritization between watersheds are observed. I 

chose the BCLRW study area based on the availability of IPSI data. NLCD and LULC­

A VHRR are freely available for the entire United States. However, this future research 

scenario should include newer releases of NLCD, which will be available for the eastern 

United States in late 2004 (USEP A 2003b ). Temporal differences in IPSI ( ca 2000) and 

NLCD (ca 1992) were apparent during simulations within BCLRW watersheds 

containing mixed land cover types; BCLR W experienced a 23 % growth in population 

between 1990 and 2000 (US Census 2000) and decreases in agricultural land (USDA 

1997), creating urban infringement on forest and agriculture. I expect that, within 

BCLRW, differences in model results between fine-scale data (e.g., ISPI) and NLCD will 

decrease from those presented in this research as more up-to-date NLCD are used. 

The development of ECV s using the multiple regression technique suggested by 

McFarland and Huack (2001) was unsuccessful in BCLRW primarily because of the 
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limited availability of water quality data. Future research with an extensive water quality 

survey (2 to 4 years) could better determine if this technique is applicable in regions 

similar to BCLR W and aim to improve this technique so that other research and 

watershed managers can benefit. An extensive water quality survey should include 

continuous sampling that captures a spatial representation of the entire basin. 

Calculations of flow paths, upslope-contributing areas, and downslope dispersal 

areas rely on only one method for determining pixel accumulation-the D-8 method or 

steepest decent. Building upon and improving the TI and BI within the weighed ECM 

will help researchers understand differences in weighted ECM simulation in areas 

characterized by both gently rolling and rugged terrain. Research conducted by Quinn et

al. (1991), Costa-Cabral and Burges (1994), and Tarboton et al. (1997) provide 

alternative flow path extraction methods. 

Moreover, the weighted ECM analysis suggests that non-riparian zones were 

primary nutrient sources in BCLRW. The lack of internal BCLRW data and scope of this 

thesis prevented me from conducting field surveys to verify these findings. Endreny and 

Wood (2003) also were unable to validate weighted ECM results to detailed field 

surveys. Conducting extensive field surveys would provide future model applications a 

higher level of confidence for accurately locating BMP potential areas. 

Finally,;findings from this research do not suggest that fine-scale land cover data 

are unnecessary for modeling the hydrologic processes and water quality of a particular 

watershed, only that fine-scale data are unnecessary for prioritizing risk areas in a county­

sized area similar to that ofBCLRW. For example, on a client-by-client basis, TVA uses 

IPSI within propriety spreadsheet models to simulate several different water quality 
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constituents (e.g., nutrients, bacteria, zinc, and sediment loss). IPSl's ability to model 

detailed hydrologic processes is essential for isolating specific land cover types and 

reporting accurate NPS pollutant concentrations. Conversely, this research is suggesting 

that in regions that have the same hydrologic characteristics as BCLRW, and where IPSI 

or other fine-scale data are not available, local watershed managers can confidently use 

broad-scale data ( e.g., NLCD and 30-m NED) to prioritize nutrient-risk areas. Simple 

and quick modeling allows managers to determine some level of risk for their study while 

retaining a good portion of their budget for other detailed modeling or monitoring needs. 
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Table A.4: Literature survey of TP and TN export coefficient values. 

Land Cover TP (kg/ha/yr) 

Forest 

Forest' 

Deciduous Hardwood2 

Mixed Pine and Hardwood2 

Mixed Pine and Hardwood2 

Oak-Hickory forest2 

Woodland3 

Urban 

Urban' 

Industria12 

Industria13 

Commercia12 

Commercial3 

Low Density Urban 1·4 

Suburban/Residentia12 

Multi-family Residential3 

Pasture 

Moderate dairy grazing2 

Heavy Dairy grazing2 

Pasture for brood cattle2 

Continuous grazing2 

Pasture3 

Cropland 

Com/Soybeans; no ti112 

Com2 

Com2 

Soybeans; conventional tillage2 

Soybeans; no tillage2 

Soybeans; no tillage2 

Soybeans; no tillage2 

Tobacco and Com2 

Miller 

Agricultural Crops3 

Barren Land 

Inactive Ag. Land 1 

Idle Land4 

Idle Land4 

1 Compiled by Frink ( 1991 ). 
2 Compiled by Reckhow et al. (1980). 
3 Compiled by EPA (2001 b ). 

0.01 

0.35 

0.43 

1.50 

2.00 

0.15 

1.00 

4.17 

5.35 

4.85 

2.30 

2.20 

0.43 

2.21 

0.14 

0.16 

1.35 

3.80 

0.56 

3.70 

2.21 

0.40 

17.64 

2.60 

7.20 

3.70 

1.40 

0.44 

1.05 

0.52 

0.05 

0.25 

4 Complied by McFarland and Hauck (2001). 

TN(kglha/yr) Source 

0.10 Haith and Shoemaker (1987) 

2.82 Taylor et al. (1971) 

0.28 Krebs and Galley (1977) 

0.20 Krebs and Galley (1977) 

0.03 Henderson et al. ( 1977) 

3.12 Northeast Florida Water Mngt Dis. (1994) 

5.00 Rast and Lee (1983) 

14.95 Betson (1978) 

11.13 Northeast Florida Water Mngt Dis. (1994) 

12.78 Betson (1978) 

10.63 Northeast Florida Water Mngt Dis. (1994) 

28.00 Haith and Shoemaker (1987) 

1.56 Betson (1978) 

7.92 Northeast Florida Water Mngt Dis. (1994) 

3.46 Kilmer et al. (1974) 

10.99 Kilmer et al. (1974) 

9.23 Krebs and Galley (1977) 

13.00 Krebs and Galley (1977) 

6.28 Northeast Florida Water Mngt Dis. (1994) 

19.30 McDowell et al. (1978) 

12.42 Smith et al. (1978) 

3.29 Bradford (1974) 

46.50 McDowell et al. (1978) 

5.10 McDowell et al. (1978) 

23.00 McDowell et al. (1978) 

19.30 McDowell et al. (1978) 

3.70 Krebs and Golley (1977) 

3.04 Bradford (1974) 

17.54 Northeast Florida Water Mngt Dis. (1994) 

2.00 Haith and Shoemaker (I 987) 

0.50 Loehr et al. (1989) 

6.00 Loehr et al. (1989) 

149 
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150 

Table A.5: Calibration loading values. Nutrient loadings produced from 
ECM simulations at each ECV quartile. 

Unweighted ECM Weighted ECM 

ECV Quartile TP* TN* TP* TN* 

Minimum 1,750.5 23,424.3 1,695.3 20,365.2 

Lower 5,817.8 48,828.7 5,541.7 45,693.3 

Median 10,600.4 82,458.6 10,146.0 73,228.1 

Upper 24,391.1 107,470.6 23,641.6 101,880.1 

Maximum 52,988.2 164,585.1 52,125.6 155,268.3 

Observed Loadings 10,704.1 87,235.6 10,704.1 87,235.6 

Nutrient loadings are represented as kg/year. 
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